Kea Administrator Reference Manual

Documentation
Release 1.7.0

Internet Systems Consortium

Sep 24, 2019

CONTENTS

1 Introduction 3
1.1 Supported Platforms o . e e e e 3
1.2 Required Software at Run-Time 3
1.3 KeaSoftware e e e 4
Quick Start 5
2.1 Quick Start Guide for DHCPv4 and DHCPv6 Services 5
2.2 Running the Kea Servers Directly e 6
Installation 7
3.1 Packages e e e e 7
3.2 Imstallation Hierarchy e 7
3.3 BuildRequirements e e 7
3.4 Installation from Source L. e e 8

34.1 Download TarFile e 8

342 Retrieve from Git e e e e e 9

343 Configure Beforethe Build L 9

344 Build ... 11

345 Install . . e e e 11

3.5 DHCP Database Installation and Configuration 12
3.5.1 Building with MySQL Support 12

3.5.2 Building with PostgreSQL support 12

3.5.3 Building with CQL (Cassandra) Support i it 13

3.6 Hammer Building Tool e e e e e 13
Kea Database Administration 17
4.1 Databases and Database Version Numbers oo 17
4.2 Thekea-admin Tool e 17
4.3 Supported Backends L e e e 18
43.1 Memfile e 18
Upgrading Memfile Lease Files from an Earlier Versionof Kea 18

432 MySQL . . . e e 19
First-Time Creation of the MySQL Database 19

Upgrading a MySQL Database from an Earlier Versionof Kea 20

433 PostgreSQL oL e e 21
First-Time Creation of the PostgreSQL Database 21

Initialize the PostgreSQL Database Using kea-admin 22

Upgrading a PostgreSQL Database from an Earlier Versionof Kea 22

434 Cassandrao e e e 23
First-Time Creation of the Cassandra Database 23

Upgrading a Cassandra Database from an Earlier Versionof Kea 23

4.3.5 Using Read-Only Databases with Host Reservations
4.3.6 Limitations Related to the Use of SQL Databases
Year 2038 ISSUE o o o e e e e e e

5 Kea Configuration

5.1

5.2

JSON Configuration o 0 v it e e e e e e e e e e e e e e e
5.1 JSONSYNtaxo o o e e e e e e e e e e e e e
5.1.2 Simplified Notation L e
Kea Configuration Backend
52.1 Applicability e e
5.2.2 CB Capabilities and Limitations o v v it e e e e e
523 CBCOMPONENLS . . . v v v v ot e
524 Configuration Sharing and Server Tags

Managing Kea with keactrl

6.1
6.2
6.3
6.4
6.5

OVEIVIEW o o i e e e e e e
Command Line Options e
The keactrl Configuration File
Commands L. e e e e
Overriding the Server Selection i i i e e e e e e e e

The Kea Control Agent

7.1
7.2
7.3
7.4
1.5

Overview of the Kea Control Agent i it
Configuration e e e e e e e e e e e e e e e e e
Secure CoNNECtions e e
Starting the Control Agent L e
Connecting to the Control Agent e

The DHCPv4 Server

8.1
8.2

Starting and Stopping the DHCPv4 Server
DHCPv4 Server Configuration oo ittt e e e e e
82.1 Introduction e
8.2.2 Lease StOTage v v v i e e e e e e e e e e e e e e e e e e

Memfile - Basic Storage for Leases L e

Lease Database Configuration

Cassandra-Specific Parameters
8.2.3 HOStS StOrage v v v it e e e e e e e e e e e e e

DHCPv4 Hosts Database Configuration v i vt v vt et

Using Read-Only Databases for Host Reservations with DHCPv4
8.2.4 Imterface Configuration e
8.2.5 Issues with Unicast Responses to DHCPINFORM
8.2.6 IPv4 SubnetIdentifier.
8277 IPv4SubnetPrefix
8.2.8 Configuration of IPv4 Address Pools
8.2.9 Sending T1 (Option 58) and T2 (Option59) v,
8.2.10 Standard DHCPv4 Optionsottt ittt e
8.2.11 Custom DHCPV4 Options it v i e et et s e e e
8.2.12 DHCPv4 Private Options o vt it e ettt e e e e
8.2.13 DHCPv4 Vendor-Specific Options o o v i v v it et e e e e
8.2.14 Nested DHCPv4 Options (Custom Option Spaces)
8.2.15 Unspecified Parameters for DHCPv4 Option Configuration
8.2.16 Stateless Configuration of DHCPv4 Clients
8.2.17 Client Classificationin DHCPv4

Setting Fixed Fields in Classification i

Using Vendor Class Information in Classification

25
25
25
26
26
26
27
28
28

31
31
31
31
33
35

37
37
37
39
40
40

Defining and Using Custom Classes oo i vt i it i 75

Required Classification 0 i e e e e 75

8.2.18 DDNS for DHCPv4 e 76
DHCP-DDNS Server Connectivityo oo 77

When Does the kea-dhcp4 Server Generate a DDNS Request? 78

kea-dhcp4 Name Generation for DDNS Update Requests 79

Sanitizing Client Host Name and FQDN Names 81

8.2.19 NextServer (siaddr) e e e e e e 82
8.2.20 Echoing Client-ID (RFC 6842) et et 82
8.2.21 Using Client Identifier and Hardware Address 82
8.2.22 Authoritative DHCPv4 Server Behavior 84
8.2.23 DHCPv4-over-DHCPv6: DHCPv4 Side 84
8.2.24 Sanity Checks in DHCPv4 e e 85

8.3 HostReservationin DHCPv4 0 e 86
8.3.1 AddressReservation Types e 87

8.3.2 Conflicts in DHCPv4 Reservations oo v ittt 88

833 ReservingaHostname e 89

8.3.4 Including Specific DHCPv4 Options in Reservations 90

8.3.5 Reserving Next Server, Server Hostname, and Boot File Name 91

8.3.6 Reserving Client Classesin DHCPv4, 91

8.3.7 Storing Host Reservations in MySQL, PostgreSQL, or Cassandra 92

8.3.8 Fine-Tuning DHCPv4 Host Reservation 92

8.3.9 Global Reservations in DHCPv4 94

8.4 Shared Networks in DHCPv4 e 95
8.4.1 Local and Relayed Traffic in Shared Networks 98

8.4.2 Client Classification in Shared Networks 100

8.4.3 Host Reservations in Shared Networks L 101

8.5 Server Identifier in DHCPv4 e 102
8.6 How the DHCPv4 Server Selects a Subnet forthe Client 103
8.6.1 Using a Specific Relay AgentforaSubnet 103

8.6.2 Segregating IPv4 Clients in a Cable Network, 104

8.7 Duplicate Addresses (DHCPDECLINE Support)ottt 105
8.8 Statistics inthe DHCPv4 Server o e e 105
8.9 Management API for the DHCPv4 Server it i it e 108
8.10 User Contexts in IPv4 o oL e 109
8.11 Supported DHCP Standards e 110
8.12 DHCPv4 Server Limitations ittt e e e e e e e e 110
8.13 Kea DHCPv4 Server Examples o o e 110
8.14 Configuration Backend in DHCPv4 e 111
8.14.1 Supported Parameters e e e e e e e e e 111
8.14.2 Enabling Configuration Backend L Lo 112

The DHCPv6 Server 115
9.1 Starting and Stopping the DHCPv6 Server e 115
9.2 DHCPv6 Server Configuration i e 116
9.2.1 Introduction e e e e e e e 116

9.2.2 Lease StOrageo i i e e e e e e e e e 118
Memfile - Basic Storage for Leases L o e 118

Lease Database Configuration o o i it it e 119
Cassandra-Specific Parameters L e 121

9.23 HostsStorage e e 121
DHCPv6 Hosts Database Configuration 122

Using Read-Only Databases for Host Reservations with DHCPv6 123

9.2.4 Interface Configuration L e e e e e e e 123

9.3

9.4

9.5
9.6
9.7
9.8
9.9
9.10
9.11
9.12

9.2.5 IPv6Subnetldentifier. e e 124

9.2.6 IPv6SubnetPrefix e 125
9.2.7 Unicast Traffic Support e e 125
9.2.8 Configuration of IPv6 AddressPools L oL, 126
9.2.9 Subnet and Prefix Delegation Pools oo 127
9.2.10 Prefix Exclude Option e 128
9.2.11 Standard DHCPVO Options v v i i i e e e e e e e e e e e e e e e e 128
9.2.12 Common Softwired6 Options o v v it e e e e e e e e e 134

Softwire46 Container Options e 134

S46 Rule Option L 135

SA6BROPLion e e e 135

SA6DMR Option oot e e e e e e e e 135

S46 IPv4/IPv6 Address Binding Option e 136

S46 Port Parameters e e 136
9.2.13 Custom DHCPv6 Options ittt 136
9.2.14 DHCPv6 Vendor-Specific Optionsottt 138
9.2.15 Nested DHCPv6 Options (Custom Option Spaces) v v v v v vt 139
9.2.16 Unspecified Parameters for DHCPv6 Option Configuration 141
9.2.17 Controlling the Values Sent for T1 and T2 Times 141
9.2.18 IPv6SubnetSelection. e e e 142
9.2.19 Rapid Commit e e e e e e e e e 143
9.220 DHCPvORelays. e 143
9.2.21 Relay-Supplied Options o i v i e e e e e e e e e e 144
9.2.22 Client Classificationin DHCPv6 145

Defining and Using Custom Classes vt 145

Required Classification e 146
9.223 DDNSforDHCPvVO 147

DHCP-DDNS Server Connectivity« v v v v v v vttt e e e e e 148

When Does the kea-dhcp6 Server Generate a DDNS Request? 149

kea-dhcp6 Name Generation for DDNS Update Requests 150

Sanitizing Client FQDN Names 152
9.2.24 DHCPv4-over-DHCPv6: DHCPv6 Side 153
9.2.25 Sanity Checks in DHCPvO e 154
Host Reservationin DHCPvO e 155
9.3.1 Address/Prefix Reservation Types o i 156
9.3.2 Conflicts in DHCPv6 Reservations 157
9.3.3 ReservingaHostname oo 157
9.3.4 Including Specific DHCPv6 Options in Reservations 158
9.3.5 Reserving Client Classesin DHCPv6 159
9.3.6 Storing Host Reservations in MySQL, PostgreSQL, or Cassandra 160
9.3.7 Fine-Tuning DHCPv6 Host Reservation 161
9.3.8 Global Reservationsin DHCPv6 162
Shared Networks in DHCPvO e 163
9.4.1 Local and Relayed Traffic in Shared Networks 166
9.4.2 Client Classification in Shared Networks 168
9.4.3 Host Reservations in Shared Networks 170
Server Identifier in DHCPVO 0 e 171
DHCPvO data directory o i i e e e e 173
Stateless DHCPv6 (Information-Request Message)o v it i i 174
Support for RFC 7550 (now part of REC 8415) it 174
Using a Specific Relay Agent foraSubnet 175
Segregating IPv6 Clients in a Cable Network 176
MAC/Hardware Addresses in DHCPvO 176
Duplicate Addresses (DECLINE Support) oottt 178

9.13 Statistics in the DHCPVO Server i e e e e 178

9.14 Management API for the DHCPv6 Server e 181
9.15 UserContextsinIPvh e 182
9.16 Supported DHCPv6 Standards e 183
9.17 DHCPv6 Server Limitationsottt it e e e e e 184
0.18 Kea DHCPvO server examples o o v v v ittt ittt e e e e e e 185
9.19 Configuration Backendin DHCPvV6 e 185
9.19.1 Supported Parameters L e e e e e e e e e e 185

9.19.2 Enabling Configuration Backend oo 0oL 186

10 Lease Expiration 189
10.1 Lease Reclamation e 189
10.2 Lease Reclamation Configuration Parameters 190
10.3 Configuring Lease Reclamation e 190
10.4 Configuring Lease Affinity e 192
10.5 Reclaiming Expired Leases viaCommand i 193

11 Congestion Handling 195
11.1 Whatis Congestion? it e e e e e e e 195
11.2 Configuring Congestion Handling ittt 195

12 The DHCP-DDNS Server 197
121 OVEIVIEW . . . o oo i e e e e e e 197
12.1.1 DNS Server Selection e e e e 197

12.1.2 ConflictResolution L e 197

12.1.3 Dual-Stack Environments Lo e e e e 198

12.2 Starting and Stopping the DHCP-DDNS Server 198
12.3 Configuring the DHCP-DDNS Server e 199
12.3.1 Global Server Parameters e e e 199

12.3.2 Management API forthe D2 Servero 200

1233 TSIGKey List o o o e e e 201

12.3.4 Forward DDNS 0 e 202

Adding Forward DDNS Domains it 202

Adding Forward DNS Servers o it e e 203

12.3.5 Reverse DDNS o e 204

Adding Reverse DDNS Domains o e 204

Adding Reverse DNS Servers o 205

12.3.6 User Contexts in DDNS e 205

12.3.7 Example DHCP-DDNS Server Configuration 206

12.4 DHCP-DDNS Server Limitations o v v it ittt e e e e e e 208
12.5 Supported Standards L e e e 208

13 The LFC Process 209
I3.1 OVerview 209
13.2 Command-Line Options e 209

14 Client Classification 211
14.1 Client Classification OVEIview o ottt vttt e e et e e e e e 211
142 Built-in Client Classes o i i it et e 212
14.3 Using Expressions in Classification Lo 213
14.3.1 Logical Operators v v ittt e e e e e e e e e e 215

14.3.2 Substring e e e e e e e e e e e e e 216

1433 Concat. o 216

1434 Tfelse e e 216

1435 Hexstring oL e 216

14.4 Configuring Classes o o v i i it e e e e e e 216
14.5 Using Static Host Reservations In Classification, 218
14.6 Configuring Subnets With Class Information 218
14.7 Configuring Pools With Class Information 219
14.8 USIiNg CLasses v v v v i v e it e e e e e e e e e e e 221
149 Classesand Hooks e 221
14.10 Debugging EXpressions o v v v v i e e e e e e e e e e e e e e e e e e 221
15 Hooks Libraries 223
15.1 Introduction i i L e e e e e e 223
15.2 Installing Hook Packages e e 223
15.3 Configuring Hooks Libraries e e e 225
15.4 Available Hooks Libraries e e e e e 226
15.5 user_chk: Checking User ACCeSS« o v v v i v it e et e e e e e e e e e 228
15.6 legal_log: Forensic Logging Hooks 229
15.6.1 LogFile Naming i i v i it e e e e e e e e 230
15.6.2 DHCPv4 LogEntries i e e e e e e e e e 230

15.6.3 DHCPv6LogEntries e 231
15.6.4 Configuring the Forensic Log Hooks 233
15.6.5 Database Backend e e 234

15.7 flex_id: Flexible Identifiers for Host Reservations o o o v v v v i i 235
15.8 host_cmds: Host Commands o e e e e e e e 238
15.8.1 The subnet-id Parameter e e e 239
15.8.2 Thereservation-add Command 239
15.8.3 Thereservation-get Command 240
15.8.4 The reservation-get-all Command 241
15.8.5 The reservation-get-page command e e e e e e e e e 242
15.8.6 Thereservation-del Command e 244

159 lease_cmds: Lease Commands oL oL e e e e e e 245
15.9.1 The lease4-add, lease6-add Commands e 246
15.9.2 The lease6-bulk-apply Command 248
15.9.3 The lease4-get, lease6-get Commands oo e e 250
15.9.4 The lease4-get-all, lease6-get-all Commands 251
15.9.5 The lease4-get-page, lease6-get-page Commands 253
15.9.6 The lease4-del, lease6-del Commands e 254
15.9.7 The lease4-update, lease6-update Commands 255
15.9.8 The lease4-wipe, lease6-wipe Commands oL 256

15.10 subnet_cmds: Subnet Commands e e e e e e e 256
15.10.1 The subnet4-list Command i it e e e e e 257
15.10.2 The subnet6-list Command Lo e e e 257
15.10.3 The subnetd-get Command Lo e e e 258
15.10.4 The subnet6-get Command o 259
15.10.5 The subnetd-add Command i i e e e 259
15.10.6 The subnet6-add Command o e e e 260
15.10.7 The subnetd-update Command L 261
15.10.8 The subnet6-update Command Lo oL 262
15.10.9 The subnetd-del Command e e e 262
15.10.10The subnet6-del Command i e e e 263
15.10.11The network4-list, network6-list Commands o v v v i 264
15.10.12The network4-get, network6-get Commands 264
15.10.13The network4-add, network6-add Commands 265
15.10.14The network4-del, network6-del Commands o 266
15.10.15The network4-subnet-add, network6-subnet-add Commands 267
15.10.16The network4-subnet-del, network6-subnet-del Commands 268

vi

15.11 class_cmds: Class Commands o v v v v e e e e e e e e e 268

15.11.1 Theclass-add Command e 269
15.11.2 The class-update Commandttt e e e e e 269
15.11.3 The class-del Command L 270
15.11.4 The class-list Command e 270
15.11.5 The class-get Command e e 271
15.12 cb_cmds: Configuration Backend Commands 272
15.12.1 Commands STruCture v v v ittt e e e e e e e e e e e e e e e 272
15.12.2 Control Commands for DHCP Servers 273
15.12.3 Metadata o oL e e e e e e e e e e e e e e 273
15.12.4 remote-serverd-del, remote-server6-del commands 273
15.12.5 remote-serverd-get, remote-server6-get commands oL 274
15.12.6 remote-serverd-get-all, remote-server6-get-all commands 275
15.12.7 remote-serverd-set, remote-serverb-setcommands L. L. 276
15.12.8 The remote-global-parameter4-del, remote-global-parameter6-del Commands 276
15.12.9 The remote-global-parameter4-get, remote-global-parameter6-get Commands 277
15.12.10The remote-global-parameter4-get-all, remote-global-parameter6-get-all Commands 278
15.12.11The remote-global-parameter4-set, remote-global-parameter6-set Commands 279
15.12.12The remote-network4-del, remote-network6-del Commands 280
15.12.13The remote-network4-get, remote-network6-get Commands 280
15.12.14The remote-network4-list, remote-network6-list Commands 281
15.12.15The remote-network4-set, remote-network6-set Commands 282
15.12.16The remote-option-def4-del, remote-option-def6-del Commands 283
15.12.17The remote-option-def4-get, remote-option-def6-get Commands 284
15.12.18The remote-option-def4-get-all, remote-option-def6-get-all Commands 284
15.12.19The remote-option-def4-set, remote-option-def6-set Commands 285
15.12.20The remote-option4-global-del, remote-option6-global-del Commands 286
15.12.21The remote-option4-global-get, remote-option6-global-get Commands 286
15.12.22The remote-option4-global-get-all, remote-option6-global-get-all Commands 287
15.12.23The remote-option4-global-set, remote-option6-global-set Commands 287
15.12.24The remote-option4-network-del, remote-option6-network-del Commands 288
15.12.25The remote-option4-network-set, remote-option6-network-set Commands 289
15.12.26The remote-option6-pd-pool-del Command 289
15.12.27The remote-option6-pd-pool-set Command 290
15.12.28The remote-option4-pool-del, remote-option6-pool-del Commands 291
15.12.29The remote-option4-pool-set, remote-option6-pool-set Commands 291
15.12.30The remote-option4-subnet-del, remote-option6-subnet-del Commands 292
15.12.31The remote-option4-subnet-set, remote-option6-subnet-set Commands 292
15.12.32The remote-subnet4-del-by-id, remote-subnet6-del-by-id Commands 293
15.12.33The remote-subnet4-del-by-prefix, remote-subnet6-del-by-prefix Commands 293
15.12.34The remote-subnet4-get-by-id, remote-subnet6-get-by-id Commands 294
15.12.35The remote-subnet4-get-by-prefix, remote-subnet6-get-by-prefix Commands 294
15.12.36The remote-subnet4-list, remote-subnet6-list Commands 295
15.12.37The remote-subnet4-set, remote-subnet6-set Commands 296
15.13 ha: High Availability L e e e 298
15.13.1 Supported Configurations« v v vt i e e e e e e e e e e e e e 298
15.13.2 Clocks on Active Serversottt e e e 299
15.13.3 Server States o e e e e e e e e e e e e 299
15.13.4 Scope Transition in a Partner-Down Case 301
15.13.5 Load-Balancing Configuration o v i i i ittt 302
15.13.6 Load Balancing with Advanced Classification 304
15.13.7 Hot-Standby Configuration e 306
15.13.8 Lease Information Sharing 307
15.13.9 Controlling Lease-Page Size Limit 308

vii

15.13.10TIMEOULS o o o e e e e e e e e e 308

15.13.11Pausing the HA State Machine it e et 309
15.13.12Control Agent Configuration i v v it e e e e e 312
15.13.13Control Commands for High Availability 312

The ha-sync Command 313

The ha-scopes Command e 313

The ha-continue Command e 314

15.14 stat_cmds: Supplemental Statistics Commands Lo 314
15.14.1 The stat-lease4-get, stat-lease6-get Commands 315

15.15 radius: RADIUS Server Support 317
15.15.1 Compilation and Installation of the RADIUSHook 317
15.15.2 RADIUS Hook Configuration ittt 321

15.16 host_cache: Caching Host Reservations v v it ittt 324
15.16.1 The cache-flush Command ittt i 325
15.16.2 The cache-clear Command e e 325
15.16.3 The cache-size Command e 325
15.16.4 The cache-write Command e e e 326
15.16.5 The cache-load Command e 326
15.16.6 The cache-get Command i i e e 326
15.16.7 The cache-get-by-id Command L o 327
15.16.8 The cache-insert Command e 327
15.16.9 The cache-remove Command e e 328

1517 User CONEXES . . v v v v v e 328
16 Statistics 331
16.1 Statistics OVEIVIEW o o i o e o e e e e e e e e e e e e e e e e 331
16.2 Statistics Lifecycle e e e e e 331
16.3 Commands for Manipulating Statistics o o e e e e e 332
16.3.1 The statistic-get Command oL 332
16.3.2 The statistic-reset Command e 333
16.3.3 The statistic-remove Command e 333
16.3.4 The statistic-get-all Command e e 333

16.3.5 The statistic-reset-all Command e e e 334
16.3.6 The statistic-remove-all Command e 334
16.3.7 The statistic-sample-age-set Command Lo L. 334
16.3.8 The statistic-sample-age-set-all Command oL, 335
16.3.9 The statistic-sample-count-set Command L. oL 335
16.3.10 The statistic-sample-count-set-all Command 335

16,4 TIME SEIICS . . .« & v v v o e 336
17 Management API 337
I7.1 Data Syntax v v ot e e e e e e e e e e e e e e e e e e e 337
17.2 Using the Control Channel s e e e 339
17.3 Commands Supported by Both the DHCPv4 and DHCPv6 Servers 340
17.3.1 The build-report Command e 340
17.3.2 Theconfig-get Command e e 340
17.3.3 The config-reload Command e e e 340
17.3.4 Theconfig-test Command e e e e e 340
17.3.5 The config-write Command e 341
17.3.6 The leases-reclaim Command 341
17.3.7 Thelibreload Command it e e 342
17.3.8 The list-commands Command it 342
17.3.9 Theconfig-set Command i e e e 342
17.3.10 The shutdown Command ittt et et et 343

viii

17.3.11 The dhcp-disable Command e
17.3.12 The dhcp-enable Command 0 .t e e e e e
17.3.13 The version-get Command L
17.4 Commands Supported by the D2 Server L
17.5 Commands Supported by the Control Agent.

18 Logging
18.1 Logging Configuration o i i it e e e e e e e e e e e e e e
I8. 1.1 LOogEErS . . . o o o e e e e e e e e e e
The name (string) Logger e
The severity (string) Logger o e e e e e e
The debuglevel (integer) Logger o i e
The output_options (list) Logger L o
The output (string) Option
The flush (true of false) Option
The maxsize (integer) Option v v v v i et e e e
The maxver (integer) Option v v v vt e e e e e
The pattern (string) Option e
18.1.2 Logging Message Format e
Example Logger Configurations 0t
18.1.3 Logging During Kea Startup i e e e e

19 The Kea Shell
19.1 Overview of the Kea Shell e
19.2 Shell Usage o v v i e e e e e e e e e e e e e e e e

20 YANG/NETCONF Support
201 OVEIVIEW . . . v vt it e e e e e e e e e e e e e
20.2 Installing NETCONF e e e e e e e e e e e e e e
20.2.1 Installing NETCONFon Ubuntu 18.04
20.2.2 Installing NETCONFon CentOS 7.5 i
20.3 Quick Sysrepo OVEIVIEW L v i it e e e e e e e e e e e e e e e e
20.4 Supported YANG Models e
20.5 Usingthe NETCONF Agent o v i ittt e e e e e e e e e e e e e e e e e e e
20.6 Configuration vt i e e e e e e e e e e e e e e e e
20.7 A kea-netconf Configuration Example Lo oo o
20.8 Starting and Stopping the NETCONF Agent
20.9 A Step-by-Step NETCONF Agent Operation Example
20.9.1 Setup of NETCONF Agent Operation Example
20.9.2 Error Handling in NETCONF Operation Example
20.9.3 NETCONF Operation Example with TwoPools
20.9.4 NETCONF Operation Example with Two Subnets
20.9.5 NETCONF Operation Example with Logging

21 API Reference
211 build-report oL e e e e e e e e e e
21.2 cache-clear e
21.3 cache-get L e
21.4 cache-get-by-id L L e e e e e e
21.5 cache-inSert. e e e e e e e e e e e e
21.6 cache-load e e e e
21.7 cache-remove e e e e e e e e e e e e
21.8 cache-Size s
21.9 cache-Write e e e e e e
21.10 class-add e e e e e e e e e e

345
345
345
345
349
349
349
349
349
350
350
350
350
352
352

355
355
355

357
357
357
357
357
357
359
360
360
362
364
364
364
366
368
368
369

371
372
372
373
374
374
375
376
377
377
378

21.11 class-del e e e e 379

2102 ClasS-et . . v o i e e e e e e e e e e e e e e e e 379
2103 class-liSt . . o o o e e e e e e e e e e e e e e 380
21.14 class-update L e e e 381
2115 config-get L e e e 381
21.16 config-reload e e 382
2107 config-Set i e e e e e e e e e e e e e e e 382
2118 config-test oL e e e e e e e e e e e e e e e 383
2119 config-Write L . e e e e e e e e e e e 384
21.20 dhep-disable L L e e e 384
21.21 dhep-enable L L e e e 385
21.22 ha-Continue e e e e e e e e e e e e e 386
21.23 ha-heartbeat e e 386
21.24 a-SCOPLS « v v v v v e 387
2125 ha-Sync oL e 387
21.26 leased-add L. 388
21.27 leased-del oL e e 389
2128 18aSe4-CL o e e e e e e e e e e e e e e e e e 389
21.29 leased-get-all e e e e e e e e e 390
21.30 leased-update e e e e 391
2131 leased-Wipe L L e e 391
21.32 lease6-add e e e 392
21.33 lease6-bulk-apply L e e e e e e e e e e e 393
2134 lease6-del L L e e 394
2135 1eaSe0-BCL i e e e e e e e e e e e e e e e e e 395
21.36 lease6-get-all e 395
21.37 leaseb-update e e 396
21.38 1€aSEO-WIPE v o v e 397
21.39 leases-reclaimo e e e e e e e 398
21.40 libreload L e e e 398
2141 listcommands L L e e e e e e e e e e e e e e e 399
2142 networkd-add L. e e e e 399
21.43 networkd-del L. e e e e e e e e 401
21.44 network4-get L L e e e e e e e e e e e e e 401
21.45 network4-1ist L L e e e 402
21.46 network4-subnet-add L L. L e e e e 403
21.47 network4-subnet-del L 404
2148 network6-add L. e 404
21.49 networkG-del L L e e 405
21.50 networkO-get L e e e e e e e e e e e e 406
21.51 network6-List L e e e e e e 407
21.52 network6-subnet-add L. L e e e e 408
21.53 network6-subnet-del oL L e 408
21.54 remote-global-parameterd-del L e e 409
21.55 remote-global-parameterd-get e e e e e e e e e e e e e 410
21.56 remote-global-parameterd-get-all L. L e 411
21.57 remote-global-parameterd-set L e e e e e e e e e e e 412
21.58 remote-global-parameter6-del Lo 413
21.59 remote-global-parameter6-get e e e e 414
21.60 remote-global-parameter6-get-all L. e e 415
21.61 remote-global-parameter6-set e e e e e e e e e e e e 416
21.62 remote-network4-del L Lo 417
21.63 remote-network4-get oL L L e e e e e e e e e 417

21.64 remote-network4-list e e e e e 418

21.65 remote-network4-set e e e e e e e e 419

21.66 remote-network6-del L 420
21.67 remote-networkO-get L L e e e e e e e e e e e e 421
21.68 remote-networkO-list oL L e e e e e 422
21.69 remote-network6-set L. e e 423
21.70 remote-option-defd-del L. 424
21.71 remote-option-defd-get L e e e e e e e e e 425
21.72 remote-option-defd-get-all L e e 426
21.73 remote-option-defd-set e 427
21.74 remote-option-def6-del L oL e 427
21.75 remote-option-def6-get L. L. 428
21.76 remote-option-def6-get-all L e e 429
21.77 remote-option-defO-set L e e e e e e e e e e e 430
21.78 remote-optiond-global-del L 431
21.79 remote-optiond-global-get oL e 432
21.80 remote-optiond-global-get-all 433
21.81 remote-optiond-global-set e 434
21.82 remote-optiond-network-del e e e 435
21.83 remote-optiond-network-set L. oL e e e 436
21.84 remote-optiond-pool-del L. 437
21.85 remote-option4-pool-Seto oo e e e e e e e 438
21.86 remote-optiond-subnet-delo oL 439
21.87 remote-optiond-subnet-Set e e e e e e e e e e e e e e e e e e 440
21.88 remote-option6-global-del L e e e 441
21.89 remote-option6-global-get e e e e e e e e 441
21.90 remote-option6-global-get-allo oL 442
21.91 remote-option6-global-set 443
21.92 remote-option6-network-del e e e e 444
21.93 remote-option6-network-set L. L e e e e e e e e e e 445
21.94 remote-option6-pd-pool-del L e 446
21.95 remote-option6-pd-pool-seto e 447
21.96 remote-option6-pool-del L. 448
21.97 remote-option6-pool-Set e e e e e e e e e e e e 449
21.98 remote-option6-subnet-del L. L e e e e 450
21.99 remote-optionO-sUbNEt-SEt L. e e e e e e e e e e e e e e e e 451
21.100remote-serverd-delo 452
21.10Iremote-serverd-get oL L e e e e 453
21.10Zremote-serverd-get-all L. L 454
21.103remote-SerVerd-Set i i e e e e e e e e e e e e e e e e e 455
21.104remote-server6o-del L e e e 456
21.105remote-Servert-geto e e e e e e e e e e e e e e e 456
21.10@emote-server6-get-allo e 457
21.107emOte-SeIVerO-Set i e e e e e e e e e e e e e e 458
21.10&emote-subnetd-del-by-id L L e e e e e 459
21.10%emote-subnetd-del-by-prefix e e 460
21.110remote-subnetd-get-by-id L 461
21.111remote-subnetd-get-by-prefix L e 461
21.112remote-subnetd-list oL e e e e e 462
21.113remote-subnetd-seto e e e e e 463
21.114remote-subnet6-del-by-id L e e e 464
21.115remote-subnet6-del-by-prefix L e e e 465
21.11@remote-subnet6-get-by-id Lo e e e 466
21.1Tremote-subneto-get-by-prefix L 467
21.118&emote-subnetO-list L L e e e e 468

xi

22

21.11%emote-subneto-Set e e e e e e e e e e e e e e 469

21.120reservation-add L L L L e 470
21.12Treservation-del L e e 471
21.122reservation-geto e e e e e e e e e e e e e e 472
21.123%eservation-get-all L e e e 473
21.124reservation-get-Page o i e e e e e e e e e e e e e e e e e e e 473
21 025EIVer-tag-gCL . . . v v i e 474
21.126shutdown oL e e e e e 474
21 127%8tat-leased-get L. L e e e e e e e e e 475
21.128&tat-leaseB-get L e e e e e e 476
21 02%BtatiStC-OE . .« o o o i e e e e e e e e e e e e e 477
21.130statistic-get-all e e e e e e e e e e e e 477
2113 1StatiSHC-TEMOVE « « . v v v v o e e i e 478
21.13%tatistic-remove-allo oL e e e 479
21 I336tatiSHC-TESEL « . v v v v v e 479
21.134statistic-reset-all L e e 480
21.135statistic-sample-age-Set i e 481
21.136statistic-sample-age-set-all L e e e e e e e e e e e 482
21.13ktatistic-sample-count-set L. .o e e e e e e e e 482
21.13&tatistic-sample-count-set-allo oL Lo 483
21.13%ubnetd-add L e e 484
21.140ubnetd-del e e 484
21 141SubNetd-et o e e e e e e e e e e e e e e e e e e 485
21.14%ubnetd-list L e e e e e e 486
21.0143ubnetd-update e e e e e e e e e e e e e e 487
21.144subneto-add L e e e e 487
21.145%ubneto-del L L e e e 488
21.1468UDNEIO-ZOL i e 489
21 0147subneto-list L e e 490
21.148ubnetb-update e e e e e e e e e e e e e e 491
21 140version-get oL e e e e e e e e e e e e e e e e 491
Manual Pages 493
22.1 kea-dhcp4 - DHCPv4 serverinKea L e 493
2211 Synopsis.o e e e 493
22.1.2 Description e e e e e e e e e 493
22.1.3 ATZUMENLS . . o v v s e 493
22.1.4 Documentation it e e e e e e e e e e e e e e e e 493
22.1.5 Mailing Lists and Support 494
22.1.6 HIStOry e e 494
22,17 See AlSO oo e e e e e e 494
22.2 kea-dhcp6 - DHCPvOserverinKea i e e 494
2221 SYNOPSIS .« v v e 494
2222 DeSCHIPtON . . v v v v vt e 494
2223 Arguments . . .o ..o e e e e e e e 494
2224 Documentationo i i e e e e e e e e e e e e e e e e e e 495
22.2.5 Mailing Lists and Support e 495
22.2.6 HIStOrYy . . . o v i i e e e e 495
2227 See AlsOo. . . . 495
22.3 kea-ctrl-agent - Control AgentprocessinKea Lo 0oL, 495
22.3.1 Synopsis.o 495
2232 DesCription e e e e e e e e e 496
2233 ATZUMENES . . v v v o e 496
22.3.4 Documentation i L. e e e e e e e e e e e e e e e e 496

xii

22.3.5 Mailing Lists and Support L e e e e e e 496
22.3.6 HIStOrY . . . o v vt e e e e e e e e 496
2237 See AlSO e e e e 497
22.4 keactr] - Shell script for managing Kea oo o Lo, 497
2241 SynopsiS. L e 497
2242 Description e e e e e e e e 497
22.4.3 Configuration File o e e e e e e e e 497
2244 OPLONS . v v v v o e 497
2245 Documentation e e e e e e e e e e 498
22.4.6 Mailing Lists and Support e 498
22477 See AlSO o e e e e 498
22.5 kea-admin - Shell script for managing Kea databases 498
22.5.1 SYNOPSIS . « v vt e 498
2252 DesCription i it e e e e e e e e e e e e 498
2253 Arguments e e e e 498
2254 Documentation L. e e e e e e e e e e e e e 499
22.5.5 Mailing Lists and Supporto 499
2256 See AlsO. 499
22.6 kea-dhcp-ddns - DHCP-DDNS processinKea 500
22.6.1 Synopsis. e e e 500
22.6.2 Description e e e 500
22,63 ArGUMENLS . . . o v v e e e e e e e e e e e e e e e e e 500
22.6.4 Documentation L. e e e e e e e e e e e e e 500
22.6.5 Mailing Lists and Support L e e e e e 500
22.6.6 HIiStOTY o o e e e e e e 501
22.6.7 See AlSO e e e e 501
22.7 kea-Ifc - Lease File Cleanup processinKea 501
2271 SYNOPSIS .« v v e 501
2272 DESCIIPHON . . v v v v e 501
22773 ATQUMENLS . . . o v e 501
22774 Documentation it e e e e e e e e e e e e e e e e e 502
22.7.5 Mailing Lists and Support L e e 502
22.77.6 HISIOrY . . . o v i i e e e e e 502
227777 See AlsOo 502
22.8 kea-shell - Text client for Control Agent process o v v v v i vt i vt i e 502
22.8.1 Synopsis. e e e 502
22.8.2 Description e e e e 503
22.83 ArGUMENLS v v e e e e e e e e e e e e e e 503
22.8.4 Documentation L. e e e e e e e e e e e e e e e 503
22.8.5 Mailing Lists and Support L e e e e e 503
22.8.6 HIiStOTy o e e e e e e e 503
2287 See AlsO o e e e e 504
22.9 kea-netconf - NETCONF agent for Kea environment 504
22.9.1 SYNnopSiS . . v v i e e e e e e e e e e e e e e e e e e 504
22.9.2 DeSCIIPtON . . v v v v v e 504
2293 ATgUMENLSt e 504
2294 Documentation i i e e e e e e e e e e e e e e e 504
22.9.5 Mailing Lists and Supporto e 504
22.9.6 HIiStOry o i it e e 505
2297 See Also. 505
22.10 perfdhcp - DHCP benchmarking tool 505
22.10.1 Synopsis. . . . oot o e e e e e 505
22.10.2 Descriptiono e e e e e e e e 505
22,103 Templates o e e e e e e e e 505

22,104 OPHONS « « o o v oo e e e e e e e 506

22.10.5 DHCPv4-Only Options v v i ittt e e et et e e e e e e 508
22.10.6 DHCPVO-Only Options o i i it e ettt e e e e 508
22.10.7 Template-Related Options e 508
22.10.8 Options ControllingaTest e 509
22109 Arguments e e 509
22.010.10EIT01S .« . . o e e e e e e e 509

22 00.11EXIt Status o 509
22.10.12Mailing Lists and Support e 509

22 10.13HIStOry . . o o oo e e 510
22.10.148ee AISO L e e e e e e e e e e 510

23 Kea Messages Manual 511
23.1 ALLOC e e 511
23.2 ASIODNS . . o 519
233 COMMAND 522
234 CTRL 525
23.5 DATABASE e 526
23.6 DCTL e e e 527
2377 DHCPA . . 530
23.8 DHCPO 547
23.9 DHCPSRV 563
23. 10 DHCP 589
2311 EVAL .« . . o e 599
2302 HA . o e e 603
23.13 HOOKS . . . 611
23.14 HOSTS . .« o 614
235 HTTP . . . 619
23.16 LEASE . .« . e 621
2307 LEC . . . o e e e e e e e 622
23.18 LOGIMPL o 623
2319 LOG . . o e 624
2320 MYSQL . . o 626
2321 NETCONEF e e e e e e 640
2322 STAT . . . e e e 643
2323 USER . . . e 644
24 Acknowledgments 647
25 Indices and tables 649

xiv

Kea Administrator Reference Manual Documentation, Release 1.7.0

Kea is an open source implementation of the Dynamic Host Con-
figuration Protocol (DHCP) servers, developed and maintained
by Internet Systems Consortium (ISC).

This is the reference guide for Kea version 1.7.0. Links to the
most up-to-date version of this document (in PDF, HTML, and
plain text formats), along with other documents for Kea, can be
found in ISC’s Knowledgebase.

kea

CONTENTS

https://kb.isc.org/docs/kea-administrator-reference-manual

Kea Administrator Reference Manual Documentation, Release 1.7.0

2 CONTENTS

CHAPTER
ONE

INTRODUCTION

Kea is the next generation of DHCP software developed by ISC. It supports both DHCPv4 and DHCPv6 protocols
along with their extensions, e.g. prefix delegation and dynamic updates to DNS.

This guide covers Kea version 1.7.0.

1.1 Supported Platforms

Kea is officially supported on CentOS, Fedora, Ubuntu, Debian, and FreeBSD systems. It is also likely to work on
many other systems. Kea-1.7.0 builds have been tested on:

e CentOS Linux — 7

¢ Fedora— 29, 30

e Ubuntu — 16.04, 18.04, 19.04
e Debian GNU/Linux — 9, 10

* FreeBSD — 11.3, 12.0

e macOS — 10.13, 10.14

There are currently no plans to port Kea to Windows systems.

1.2 Required Software at Run-Time

Running Kea uses various extra software packages which may not be provided in the default installation of some
operating systems, nor in the standard package collections. You may need to install this required software separately.
(For the build requirements, also see Build Requirements.)

» Kea supports two cryptographic libraries: Botan and OpenSSL. Only one of them is required to be installed
during compilation. Kea uses the Botan library for C++ (https://botan.randombit.net/), version 2.0 or later. Note
that support for Botan versions earlier than 2.0 was removed in Kea 1.7.0 and later. As an alternative to Botan,
Kea can use the OpenSSL cryptographic library (https://www.openssl.org/), version 1.0.2 or later.

* Kea uses the logdcplus C++ logging library (https://sourceforge.net/p/logdcplus/wiki/Home/). It requires
log4cplus version 1.0.3 or later.

» Kea requires the Boost system library (https://www.boost.org/). Building with the header-only version of Boost
is no longer recommended.

¢ To store lease information in a MySQL database, Kea requires MySQL headers and libraries. This is an optional
dependency; Kea can be built without MySQL support.

https://botan.randombit.net/
https://www.openssl.org/
https://sourceforge.net/p/log4cplus/wiki/Home/
https://www.boost.org/

Kea Administrator Reference Manual Documentation, Release 1.7.0

1.3

To store lease information in a PostgreSQL database, Kea requires PostgreSQL headers and libraries. This is an
optional dependency; Kea can be built without PostgreSQL support.

To store lease information in a Cassandra database (CQL), Kea requires Cassandra headers and libraries. This
is an optional dependency; Kea can be built without Cassandra support.

Integration with RADIUS is provided in Kea via the hooks library available to our paid support customers. Use
of this library requires the FreeRadius-client library to be present on the system where Kea is running. This is
an optional dependency; Kea can be built without RADIUS support.

As of the 1.5.0 release, Kea provides a NETCONF interface with the kea-netconf agent. This Kea module is
built optionally and requires Sysrepo software when used. Building Kea with NETCONF support requires many
dependencies to be installed, which are described in more detail in /nstalling NETCONF.

Kea Software

Kea is modular. Part of this modularity is accomplished using multiple cooperating processes which, together, provide
the server functionality. The following software is included with Kea:

keactrl — This tool starts, stops, reconfigures, and reports status for the Kea servers.
kea-dhcp4 — The DHCPv4 server process. This process responds to DHCPv4 queries from clients.
kea—-dhcp6 — The DHCPv6 server process. This process responds to DHCPv6 queries from clients.

kea-dhcp-ddns — The DHCP Dynamic DNS process. This process acts as an intermediary between the
DHCP servers and DNS servers. It receives name update requests from the DHCP servers and sends DNS
update messages to the DNS servers.

kea-admin — A useful tool for database backend maintenance (creating a new database, checking versions,
upgrading, etc.).

kea-1fc — This process removes redundant information from the files used to provide persistent storage for
the memfile database backend. While it can be run standalone, it is normally run as and when required by the
Kea DHCP servers.

kea-ctrl-agent — Kea Control Agent (CA) is a daemon that exposes a RESTful control interface for
managing Kea servers.

kea-netconf - kea-netconf is an agent that provides a YANG/NETCONTF interface for the Kea environment.
kea-shell — This simple text client uses the REST interface to connect to the Kea Control Agent.

perfdhcp — A DHCP benchmarking tool which simulates multiple clients to test both DHCPv4 and DHCPv6
server performance.

The tools and modules are covered in full detail in this guide. In addition, manual pages are also provided in the
default installation.

Kea also provides C++ libraries and programmer interfaces for DHCP. These include detailed developer documentation
and code examples.

Chapter 1. Introduction

CHAPTER
TWO

QUICK START

This section describes the basic steps needed to get Kea up and running. For further details, full customizations, and
troubleshooting, see the respective chapters elsewhere in this Kea Administrator Reference Manual (ARM).

2.1 Quick Start Guide for DHCPv4 and DHCPvV6 Services

1. Install required run-time and build dependencies. See Build Requirements for details.
2. Download the Kea source tarball from the ISC.org downloads page or the ISC FTP server.
3. Extract the tarball. For example:
S tar xvzf kea-1.7.0.tar.gz
4. Go into the source directory and run the configure script:

$ cd kea-1.7.0
$./configure [your extra parameters]

5. Build it:

’S make

6. Install it (by default it will be placed in /usr/local/, so it is likely that you will need root privileges for this
step):

’# make install

7. Edit the Kea configuration files which by default are installed in the [kea-install-dir]/etc/kea/
directory. These are: kea—-dhcp4.conf, kea-dhcp6.conf, kea-dhcp-ddns.conf and
kea-ctrl-agent.conf, for DHCPv4 server, DHCPvG6 server, D2, and Control Agent, respectively.

8. In order to start the DHCPv4 server in the background, run the following command (as root):

’# keactrl start —-s dhcp4

Or run the following command to start the DHCPv6 server instead:

’# keactrl start —-s dhcp6

Note that it is also possible to start all servers simultaneously:

’# keactrl start

9. Verify that the Kea server(s) is/are running:

https://www.isc.org/download/
ftp://ftp.isc.org/isc/kea/

Kea Administrator Reference Manual Documentation, Release 1.7.0

keactrl status

A server status of “inactive” may indicate a configuration error. Please check
the log file (by default named [kea-install-dir]/var/log/kea-dhcp4.loqg,
[kea-install-dir]/var/log/kea-dhcp6.log, [kea-install-dir]/var/log/kea-ddns.log
or [kea—-install-dir]/var/log/kea-ctrl-agent.loq) for the details of the error.

10. If the server has been started successfully, test that it is responding to DHCP queries and that the client receives
a configuration from the server; for example, use the ISC DHCP client.

11. Stop running the server(s):

keactrl stop

For instructions specific to your system, please read the system-specific notes, available in the Kea section of ISC’s
Knowledgebase.

The details of keactrl script usage can be found in Managing Kea with keactrl.

2.2 Running the Kea Servers Directly

The Kea servers can be started directly, without the need to use keactrl. To start the DHCPv4 server run the
following command:

’# kea-dhcp4 -c /path/to/your/kea4d4/config/file. json ‘

Similarly, to start the DHCPv6 server run the following command:

’# kea-dhcp6 -c /path/to/your/keaé6/config/file. json ‘

6 Chapter 2. Quick Start

https://www.isc.org/download/
https://kb.isc.org/docs/installing-kea
https://kb.isc.org/docs
https://kb.isc.org/docs

CHAPTER
THREE

3.1

INSTALLATION

Packages

Some operating systems or software package vendors may provide ready-to-use, pre-built software packages for Kea.
Installing a pre-built package means you do not need to install the software required only to build Kea and do not need
to make the software.

3.2

Installation Hierarchy

The following is the directory layout of the complete Kea installation. (All directory paths are relative to the installation
directory):

3.3

etc/kea/ — configuration files.

include/ — C++ development header files.

1lib/ — libraries.

lib/kea/hooks — additional hooks libraries.

sbin/ — server software and commands used by the system administrator.
share/kea/ — configuration specifications and examples.
share/doc/kea/ — this guide, other supplementary documentation, and examples.
share/man/ — manual pages (online documentation).

var/lib/kea/ — server identification, and lease databases files.
var/log/ - log files.

var/run/kea - pid and logger lock files.

Build Requirements

In addition to the run-time requirements (listed in Required Software at Run-Time), building Kea from source code
requires various development include headers and program development tools.

Note: Some operating systems have split their distribution packages into a run-time and a development package. You
will need to install the development package versions, which include header files and libraries, to build Kea from the
source code.

Kea Administrator Reference Manual Documentation, Release 1.7.0

Building from source code requires the following software installed on the system:

Boost C++ libraries (https://www.boost.org/). The oldest Boost version used for testing is 1.57 (although it may
also work with older versions). The Boost system library must also be installed. Installing a header-only version
of Boost is no longer recommended.

OpenSSL (at least version 1.0.1) or Botan (at least version 2). Note that OpenSSL version 1.0.2 or 1.1.0 or later
is strongly recommended.

log4cplus (at least version 1.0.3) development include headers.

A C++ compiler (with C++11 support) and standard development headers. The Kea build has been checked
with GCC g++ 4.8.5 and some later versions, and Clang 800.0.38 and some later versions.

The development tools automake, libtool, and pkg-config.

The MySQL client and the client development libraries, when using the —with-mysql configuration flag to build
the Kea MySQL database backend. In this case, an instance of the MySQL server running locally or on a
machine reachable over a network is required. Note that running the unit tests requires a local MySQL server.

The PostgreSQL client and the client development libraries, when using the —with-pgsql configuration flag to
build the Kea PostgreSQL database backend. In this case an instance of the PostgreSQL server running locally
or on some other machine, reachable over the network from the machine running Kea, is required. Note that
running the unit tests requires a local PostgreSQL server.

The cpp-driver from DataStax is needed when using the —with-cql configuration flag to build Kea with the
Cassandra database backend. In this case, an instance of the Cassandra server running locally or on some other
machine, reachable over the network from the machine running Kea, is required. Note that running the unit tests
requires a local Cassandra server.

The FreeRADIUS client library is required to connect to a RADIUS server. (This is specified using the —with-
freeradius configuration switch.)

Sysrepo (version 0.7.6 or later) and libyang (version 0.16-r2 or later) are needed to connect to a Sysrepo
database. (This is specified using the —with-sysrepo switch when running “configure”.)

googletest (version 1.8 or later) is required when using the —with-gtest configuration option to build the unit
tests.

The documentation generation tools Sphinx, texlive with its extensions and Doxygen, if using the —enable-
generate-docs configuration option to create the documentation. Particularly, in case of Fedora: python3-sphinx,
texlive and texlive-collection-latexextra; in case of Ubuntu: python3-sphinx, python3-sphinx-rtd-theme and
texlive???

Visit ISC’s Knowledgebase at https://kb.isc.org/docs/installing-kea for system-specific installation tips.

3.4

Installation from Source

Although Kea may be available in pre-compiled, ready-to-use packages from operating system vendors, it is open
source software written in C++. As such, it is freely available in source code form from ISC as a downloadable tar
file. The source code can also be obtained from the Kea Gitlab repository at https://gitlab.isc.org/isc-projects/kea. This
section describes how to build Kea from the source code.

3.4.1 Download Tar File

The Kea release tarballs may be downloaded from: http://ftp.isc.org/isc/kea/ (using FTP or HTTP).

Chapter 3. Installation

https://www.boost.org/
https://www.sphinx-doc.org/
https://kb.isc.org/docs/installing-kea
https://gitlab.isc.org/isc-projects/kea
http://ftp.isc.org/isc/kea/

Kea Administrator Reference Manual Documentation, Release 1.7.0

3.4.2 Retrieve from Git

Downloading this “bleeding edge” code is recommended only for developers or advanced users. Using development
code in a production environment is not recommended.

Note: When building from source code retrieved via git, additional software will be required: automake (v1.11 or
later), libtoolize, and autoconf (v2.69 or later). These may need to be installed.

The latest development code is available on GitLab (see https:/gitlab.isc.org/isc-projects/kea). The Kea source is
public and development is done in the “master” branch.

The code can be checked out from https://gitlab.isc.org/isc-projects/kea.git:

$ git clone https://gitlab.isc.org/isc-projects/kea.git

The code checked out from the git repository does not include the generated configure script, the Makefile.in files, nor
their related build files. They can be created by running autoreconf with the ——install switch. This will run
autoconf, aclocal, libtoolize, autoheader, automake, and related commands.

Write access to the Kea repository is only granted to ISC staff. If you are a developer planning to contribute to Kea,
please check our Contributor’s Guide. The Kea Developer’s Guide contains more information about the process, as
well as describes the requirements for contributed code to be accepted by ISC.

3.4.3 Configure Before the Build

Kea uses the GNU Build System to discover build environment details. To generate the makefiles using the defaults,
simply run:

$./configure

Run . /configure with the ——help switch to view the different options. Some commonly used options are:

--prefix Define the installation location (the defaultis /usr/local).

--with-mysql Build Kea with code to allow it to store leases and host reservations in a MySQL
database.

--with-pgsql Build Kea with code to allow it to store leases and host reservations in a Post-
greSQL database.

--with-cql Build Kea with code to allow it to store leases and host reservations in a Cassandra
(CQL) database.

--with-log4cplus Define the path to find the Log4cplus headers and libraries. Normally this is not
necessary.

--with-boost-include Define the path to find the Boost headers. Normally this is not necessary.

--with-botan-config Specify the path to the botan-config script to build with Botan for cryptographic
functions. It is preferable to use OpenSSL (see below).

--with-openssl Replace Botan by the OpenSSL the cryptographic library. By default
configure searches for a valid Botan installation. If one is not found, it
searches for OpenSSL. Normally this is not necessary.

--enable-shell Build the optional kea—shell tool (more in The Kea Shell). The default is to
not build it.

3.4. Installation from Source 9

https://gitlab.isc.org/isc-projects/kea
https://gitlab.isc.org/isc-projects/kea/blob/master/contributors-guide.md
https://jenkins.isc.org/job/Kea_doc/doxygen/

Kea Administrator Reference Manual Documentation, Release 1.7.0

--with-site-packages Only useful when kea-shell is enabled. It causes the kea-shell python

packages to be installed in specified directory.

This is mostly useful for

Debian related distros. ~ While most systems store python packages in
${prefix }/usr/lib/pythonX/site-packages, Debian introduced separate directory
for packages installed from DEB. Such python packages are expected to be in-

stalled in /usr/lib/python3/dist-packages.

--enable-perfdhcp Build the optional per fdhcp DHCP benchmarking tool. The default is to not

build it.

Note: The -—runstatedir in the installation directories is particular. There are three cases:

* You use autoconf 2.70 or greater which supports this, but this autoconf version has not been released yet.

* You use autoconf 2.69 patched to add support of this. In this case and the previous simply use when needed

the‘‘—runstatedir‘‘ configure parameter.

e There is no support (the configure parameter is not recognized and configure directly raises an error).
For autoconf 2.69 the runstatedir environment variable is supported so simply remove the —— before
runstatedir in the configure script call, e.g.: . /configure runstatedir=/opt/run

Note: For instructions concerning the installation and configuration of database backends for Kea, see DHCP

Database Installation and Configuration.

There are also many additional options that are typically not necessary for regular users. However, they may be useful

for package maintainers, developers, or people who want to extend Kea code or send patches:

--with-gtest, --with-gtest-source Enable the building of the C++ Unit Tests using the Google Test

framework. This option specifies the path to the gtest source. (If the framework
is not installed on your system, it can be downloaded from https://github.com/
google/googletest.)

--enable-generate-docs Enable the rebuilding Kea documentation. ISC publishes Kea documentation

for each release; however, in some cases you may want to rebuild it. For exam-
ple, if you want to change something in the docs, or want to generate new ones
from git sources that are not released yet. The build procedure uses the xslt-
proc tool with the nonet argument which disables fetching missing sources, e.g
docbook.xsl, from the Internet. If you want to use the Internet anyway, please set
the XSLTPROC_NET environment variable in configure to any non-empty value,

e.g.

$./configure XSLTPROC_NET=yes —--enable-generate-docs

--enable-generate-parser Many Kea components have parsers implemented using flex (.11 files) and

bison (.yy files). Kea sources have C++/h files generated out from them. By
default Kea does not use flex or bison to avoid requiring installation of unneces-
sary dependencies for users. However, if you change anything in the parses (such
as adding a new parameter), you will need to use flex and bison to regenerate
parsers. This option lets you do that.

--enable-generate-messages Enable the regeneration of messages files from their messages

source files, e.g. regenerate xxx_messages.h and xxx_messages.cc from
xxx_messages.mes using the Kea message compiler. By default Kea is built us-
ing these .h and .cc files from the distribution. However, if you change anything

10

Chapter 3. Installation

https://github.com/google/googletest
https://github.com/google/googletest

Kea Administrator Reference Manual Documentation, Release 1.7.0

in a .mes file (such as adding a new message), you will need to build and use the
Kea message compiler. This option lets you do that.

--with-benchmark, --with-benchmark-source Enable the building of the database backend bench-
marks using the Google Benchmark framework. This option specifies the path
to the gtest source. (If the framework is not installed on your system, it can be
downloaded from https://github.com/google/benchmark.) This support is experi-
mental.

For example, the following command configures Kea to find the Boost headers in /usr/pkg/include, specifies that
PostgreSQL support should be enabled, and sets the installation location to /opt/kea:

$./configure \
——with-boost-include=/usr/pkg/include \
—-—with-pgsgl=/usr/local/bin/pg_config \
—--prefix=/opt/kea

If you have any problems with building Kea using the header-only Boost code, or you’d like to use the Boost system
library (assumed for the sake of this example to be located in /usr/pkg/lib):

$./configure \
—-with-boost-libs=-1boost_system \
—-with-boost-1lib-dir=/usr/pkg/lib

If configure fails, it may be due to missing or old dependencies.

If configure succeeds, it displays a report with the parameters used to build the code. This report is saved into the
file config.report and is also embedded into the executable binaries, e.g., kea-dhcp4.

3.4.4 Build

After the configure step is complete, build the executables from the C++ code and prepare the Python scripts by
running the command:

$ make

3.4.5 Install

To install the Kea executables, support files, and documentation, issue the command:

$ make install

Do not use any form of parallel or job server options (such as GNU make’s —j option) when performing this step;
doing so may cause errors.

Note: The install step may require superuser privileges.

If required, run 1ldconfig as root with /usr/local/lib (or with prefix/lib if configured with —prefix) in
/etc/1ld.so.conf (or the relevant linker cache configuration file for your OS):

$ ldconfig

Note: If you do not run 1dconfig where it is required, you may see errors like the following:

3.4. Installation from Source 11

https://github.com/google/benchmark

Kea Administrator Reference Manual Documentation, Release 1.7.0

program: error while loading shared libraries: libkea-something.so.l:
cannot open shared object file: No such file or directory

3.5 DHCP Database Installation and Configuration

Kea stores its leases in a lease database. The software has been written in a way that makes it possible to choose
which database product should be used to store the lease information. Kea supports four database backends: MySQL,
PostgreSQL, Cassandra, and memfile. To limit external dependencies, MySQL, PostgreSQL, and Cassandra support
are disabled by default and only memfile is available. Support for the optional external database backend must be
explicitly included when Kea is built. This section covers the building of Kea with one of the optional backends and
the creation of the lease database.

Note: When unit tests are built with Kea (i.e. the —with-gtest configuration option is specified), the databases must be
manually pre-configured for the unit tests to run. The details of this configuration can be found in the Kea Developer’s
Guide.

3.5.1 Building with MySQL Support

Install MySQL according to the instructions for your system. The client development libraries must be installed.

Build and install Kea as described in /nstallation, with the following modification. To enable the MySQL database
code, at the “configure” step (see Configure Before the Build), the —with-mysql switch should be specified:

’$./configure [other-options] --with-mysqgl

If MySQL was not installed in the default location, the location of the MySQL configuration program “mysql_config”
should be included with the switch, i.e.

’$./configure [other-options] —--with-mysgl=path-to-mysqgl_config

See First-Time Creation of the MySQL Database for details regarding MySQL database configuration.

3.5.2 Building with PostgreSQL support
Install PostgreSQL according to the instructions for your system. The client development libraries must be installed.
Client development libraries are often packaged as “libpq”.

Build and install Kea as described in Installation, with the following modification. To enable the PostgreSQL database
code, at the “configure” step (see Configure Before the Build), the —with-pgsql switch should be specified:

’$./configure [other-options] —--with-pgsqgl

If PostgreSQL was not installed in the default location, the location of the PostgreSQL configuration program
“pg_config” should be included with the switch, i.e.

’$./configure [other-options] --with-pgsgl=path-to-pg_config

See First-Time Creation of the PostgreSQL Database for details regarding PostgreSQL database configuration.

12 Chapter 3. Installation

https://jenkins.isc.org/job/Kea_doc/doxygen/
https://jenkins.isc.org/job/Kea_doc/doxygen/

Kea Administrator Reference Manual Documentation, Release 1.7.0

3.5.3 Building with CQL (Cassandra) Support

Install Cassandra according to the instructions for your system. The Cassandra project website contains useful pointers:
https://cassandra.apache.org.

If you have a cpp-driver package available as binary or as source, simply install or build and install the package. Then
build and install Kea as described in /nstallation. To enable the Cassandra (CQL) database code, at the “configure”
step (see Configure Before the Build), enter:

$./configure [other-options] —--with-cgl=path-to-pkg-config

Note if pkg—config is at its standard location (and thus in the shell path) you do not need to supply its path. If it
does not work (e.g. no pkg-config, package not available in pkg-config with the cassandra name), you can still use the
cql_config scriptin tools/ as described below.

Download and compile cpp-driver from DataStax. For details regarding dependencies for building cpp-driver, see the
project homepage https://github.com/datastax/cpp-driver. In June 2016, the following commands were used:

git clone https://github.com/datastax/cpp-driver
cd cpp-driver

mkdir build

cd build

cmake ..

make

v v v n

As of January 2019, cpp-driver does not include cql_config script. Work is in progress to contribute such a script to the
cpp-driver project but, until that is complete, intermediate steps need to be conducted. A cql_config script is present in
the tools/ directory of the Kea sources. Before using it, please create a cql_config_defines.sh file in the same directory
(there is an example available in cql_config_define.sh.sample; you may copy it over to cql_config_defines.sh and edit
the path specified in it) and change the environment variable CPP_DRIVER_PATH to point to the directory where the
cpp-driver sources are located. Make sure that appropriate access rights are set on this file. It should be executable by
the system user building Kea.

Build and install Kea as described in Installation, with the following modification. To enable the Cassandra (CQL)
database code, at the “configure” step (see Configure Before the Build), enter:

’$./configure [other-options] --with-cgl=path-to-cqgl_config

3.6 Hammer Building Tool

An optional building tool called Hammer was introduced with Kea 1.6.0. It is a Python 3 script that lets users automate
tasks related to building Kea, such as setting up virtual machines, installing Kea dependencies, compiling Kea with
various options, running unit-tests and more. This tool was created primarily for internal QA purposes at ISC and it
is not included in the Kea distribution. However, it is available in the Kea git repository. This tool was developed
primarily for internal purposes and ISC cannot guarantee its proper operation. If you decide to use it, please do so
with care.

Note: Use of this tool is completely optional. Everything it does can be done manually.

The first-time user is strongly encouraged to look at Hammer’s built-in help:

$./hammer.py —--help

3.6. Hammer Building Tool 13

https://cassandra.apache.org
https://github.com/datastax/cpp-driver

Kea Administrator Reference Manual Documentation, Release 1.7.0

It will list available parameters.

Hammer is able to set up various operating systems running either in LXC or in VirtualBox. To list of supported
systems, use the supported-systems command:

$./hammer.py supported-systems
fedora:

- 27: 1lxc, virtualbox

- 28: 1lxc, virtualbox

- 29: 1xc, virtualbox
centos:

- 7: 1lxc, virtualbox

- 8: virtualbox
ubuntu:

- 16.04: 1lxc, virtualbox

- 18.04: 1lxc, virtualbox

- 18.10: 1lxc, virtualbox
debian:

- 8: lxc, virtualbox

- 9: 1lxc, virtualbox
freebsd:

- 11.2: virtualbox

- 12.0: virtualbox

It is also possible to run the build locally, in the current system (if the OS is supported).

First, you must install the Hammer dependencies: Vagrant and either VirtualBox or LXC. To make life easier, Hammer
can install Vagrant and the required Vagrant plugins using the command:

$./hammer.py ensure-hammer-deps

VirtualBox and LXC need to be installed manually.

The basic functions provided by Hammer are to prepare the build environment and perform the actual build, and to
run the unit tests locally in the current system. This can be achieved by running the command:

$./hammer.py build -p local

The scope of the process can be defined using —with (-w) and —without (-x) options. By default the build command
will build Kea with documentation, install it locally, and run unit tests.

To exclude the installation and generation of docs, type:

$./hammer.py build -p local -x install docs

The basic scope can be extended by: mysql, pgsql, cql, native-pkg, radius, shell, and forge.

Note: To build Kea locally, Hammer dependencies like Vagrant are not needed.

Hammer can be told to set up a new virtual machine with a specified operating system, without the build:

’$./hammer.py prepare-system -p virtualbox -s freebsd -r 12.0

This way we can prepare a system for our own use. To get to such a system using SSH, invoke:

’$./hammer.py ssh -p virtualbox -s freebsd -r 12.0

14 Chapter 3. Installation

Kea Administrator Reference Manual Documentation, Release 1.7.0

It is possible to speed up subsequent Hammer builds. To achieve this Hammer employs ccache. During compilation,
ccache stores objects in a shared folder. In subsequent runs, instead of doing an actual compilation, ccache returns the
stored earlier objects. The cache with these objects for reuse needs to be stored outside of VM or LXC. To indicate
the folder, you must indicate the —ccache-dir parameter for Hammer. In the indicated folder, there are separate stored
objects for each target operating system.

$./hammer.py build -p lxc —-s ubuntu -r 18.04 —--ccache-dir ~/kea-ccache

Note: ccache is currently only supported for LXC in Hammer; support for VirtualBox may be added
later.

For more information check:

$./hammer.py —--help

3.6. Hammer Building Tool 15

https://ccache.samba.org/

Kea Administrator Reference Manual Documentation, Release 1.7.0

16 Chapter 3. Installation

CHAPTER
FOUR

KEA DATABASE ADMINISTRATION

4.1 Databases and Database Version Numbers

Kea may be configured to use a database as a storage for leases or as a source of servers’ configurations and host reser-
vations (i.e. static assignments of addresses, prefixes, options, etc.). Kea updates introduce changes to the database
schemas to faciliate new features and correct discovered issues with the existing schemas.

A given version of Kea expects a particular structure in the backend and checks for this by examining the version of the
database it is using. Separate version numbers are maintained for backends, independent of the version of Kea itself.
It is possible that the backend version will stay the same through several Kea revisions; similarly, it is possible that the
version of the backend may go up several revisions during a Kea upgrade. Versions for each backend are independent,
so an increment in the MySQL backend version does not imply an increment in that of PostgreSQL.

Backend versions are specified in a major.minor format. The minor number is increased when there are backwards-
compatible changes introduced; for example, the addition of a new index. It is desirable but not mandatory to apply
such a change; running an older backend version is possible. (Although, in the example given, running without the new
index may introduce a performance penalty.) On the other hand, the major number is increased when an incompatible
change is introduced; for example, an extra column is added to a table. If Kea is run on a backend that is too old
(as signified by a mismatched backend major version number), Kea will refuse to run; administrative action will be
required to upgrade the backend.

4.2 The kea-admin Tool

To manage the databases, Kea provides the kea—admin tool. It is able to initialize a new backend, check its version
number, perform a backend upgrade, and dump lease data to a text file.

kea—-admin takes two mandatory parameters: command and backend. Additional, non-mandatory options may
be specified. The currently supported commands are:

e db-init — Initializes a new database schema. This is useful during a new Kea installation. The database is
initialized to the latest version supported by the version of the software being installed.

* db-version— Reports the database backend version number. This is not necessarily equal to the Kea version
number as each backend has its own versioning scheme.

¢ db-upgrade — Conducts a database schema upgrade. This is useful when upgrading Kea.

* lease-dump — Dumps the contents of the lease database (for MySQL, PostgreSQL, or CQL backends) to a
CSV (comma-separated values) text file. The first line of the file contains the column names. This is meant to
be used as a diagnostic tool, so it provides a portable, human-readable form of the lease data.

17

Kea Administrator Reference Manual Documentation, Release 1.7.0

Note: In previous versions of Kea earlier than 1.6.0 db-init, db-version and db-upgrade commands were named
lease-init, lease-version and lease-upgrade.

backend specifies the type of backend database. The currently supported types are:
* memfile — Lease information is stored on disk in a text file.
* mysqgl — Information is stored in a MySQL relational database.
* pgsgl — Information is stored in a PostgreSQL relational database.
* cgl — Information is stored in an Apache Cassandra database.

Additional parameters may be needed, depending on the setup and specific operation: username, password, and
database name or the directory where specific files are located. See the appropriate manual page for details (man
8 kea—admin).

4.3 Supported Backends

The following table presents the capabilities of available backends. Please refer to the specific sections dedicated to
each backend to better understand their capabilities and limitations. Choosing the right backend may be essential for
the success of the deployment.

Table 4.1: List of available backends

Feature Memfile | MySQL PostgreSQL | CQL (Cassandra)

Status Stable Stable Stable Experimental

Data format CSV file | SQL RMDB | SQL RMDB | NoSQL database (Cassandra)
Leases yes yes yes yes

Host Reservations no yes yes yes

Options defined on per host basis | no yes yes yes

Configuration Backend no yes no no

4.3.1 Memfile

The memfile backend is able to store lease information, but cannot store host reservation details; these must be stored
in the configuration file. (There are no plans to add a host reservations storage capability to this backend.)

No special initialization steps are necessary for the memfile backend. During the first run, both kea-dhcp4 and
kea—dhcp6 will create an empty lease file if one is not present. Necessary disk-write permission is required.

Upgrading Memfile Lease Files from an Earlier Version of Kea

There are no special steps required to upgrade memfile lease files from an earlier version of Kea to a new version
of Kea. During startup the servers will check the schema version of the lease files against their own. If there is a
mismatch, the servers will automatically launch the LFC process to convert the files to the server’s schema version.
While this mechanism is primarily meant to ease the process of upgrading to newer versions of Kea, it can also be
used for downgrading should the need arise. When upgrading, any values not present in the original lease files will be
assigned appropriate default values. When downgrading, any data present in the files but not in the server’s schema
will be dropped. To convert the files manually prior to starting the servers, run the LFC process. See The LFC Process
for more information.

18 Chapter 4. Kea Database Administration

Kea Administrator Reference Manual Documentation, Release 1.7.0

4.3.2 MySQL

MySQL is able to store leases, host reservations, options defined on a per-host basis, and a subset of the server
configuration parameters (serving as a configuration backend). This section can be safely ignored if the data will be
stored in other backends.

First-Time Creation of the MySQL Database

When setting up the MySQL database for the first time, the database area must be created within MySQL, and the
MySQL user ID under which Kea will access the database must be set up. This needs to be done manually, rather than
via kea-admin.

To create the database:

1. Log into MySQL as “root”:

$ mysgl -u root -p
Enter password:
mysqgl>

2. Create the MySQL database:

mysgl> CREATE DATABASE database_name;

(database_name is the name chosen for the database.)

3. Create the user under which Kea will access the database (and give it a password), then grant it access to the
database tables:

mysgl> CREATE USER 'user-name'@'localhost' IDENTIFIED BY 'password';
mysgl> GRANT ALL ON database-name.x TO 'user-name'(@'localhost';

(user-name and password are the user ID and password being used to allow Kea access to the MySQL instance.
All apostrophes in the command lines above are required.)

4. Create the database.

You’ll need to exit mysql client

mysqgl> quit
Bye

and then use the kea—admin tool to create the database.

$ kea-admin db-init mysgl -u database-user -p database-password -n_,
—database—-name

While it is possible to create the database from within mysql client, we recommend you use the
kea-admin tool as it performs some necessary validations to ensure Kea can access the database at
runtime. Among those checks is that the schema does not contain any pre-existing tables. If there
are any pre-existing tables they must be removed manaully. An additional check examines the user’s
ability to create functions and triggers. If you encounter the following error:

ERROR 1419 (HY000) at line 1: You do not have the SUPER privilege and,
—binary logging is

enabled (you xmightx want to use the less safe log_bin_trust_function_
—screators variable)

ERROR/kea-admin: mysqgl_can_create cannot trigger, check user permissions,
—mysgl status = 1

4.3. Supported Backends 19

Kea Administrator Reference Manual Documentation, Release 1.7.0

mysgl: [Warning] Using a password on the command line interface can be_,
—linsecure.

ERROR/kea-admin: Create failed, the user, keatest, has insufficient,
—privileges.

Then user does not have the necessary permissions to create functions or triggers. The simplest
way around this is to set the global MySQL variable, log_bin_trust_function_creators to 1 via mysql
client. Note you must do this as a user with SUPER privileges:

mysgl> set (@@global.log_bin_trust_function_creators = 1;
Query OK, 0 rows affected (0.00 sec)

If you choose to create the database with mysql directly, you may do as as follows:

mysgl> CONNECT database-name;
mysgl> SOURCE path-to-kea/share/kea/scripts/mysqgl/dhcpdb_create.mysqgl

(path-to-kea is the location where Kea is installed.)

The database may also be dropped manually as follows:

mysgl> CONNECT database-name;
mysgl> SOURCE path-to-kea/share/kea/scripts/mysqgl/dhcpdb_drop.mysqgl

(path-to-kea is the location where Kea is installed.)

Warning: Dropping the database will result in the unrecoverable loss of any data it contains.

5. Exit MySQL:

mysqgl> quit
Bye

If the tables were not created in Step 4, run the kea—admin tool to create them now:

$ kea-admin db-init mysgl -u database-user -p database-password -n database-name

Do not do this if the tables were created in Step 4. kea—admin implements rudimentary checks; it will refuse to
initialize a database that contains any existing tables. To start from scratch, all must be removed data manually. (This
process is a manual operation on purpose, to avoid possibly irretrievable mistakes by kea-admin.)

Upgrading a MySQL Database from an Earlier Version of Kea

Sometimes a new Kea version may use a newer database schema, so the existing database will need to be upgraded.
This can be done using the kea—admin db-upgrade command.

To check the current version of the database, use the following command:

$ kea—admin db-version mysgl -u database-user —-p database-password -n database—name

(See Databases and Database Version Numbers for a discussion about versioning.) If the version does not match the
minimum required for the new version of Kea (as described in the release notes), the database needs to be upgraded.

Before upgrading, please make sure that the database is backed up. The upgrade process does not discard any data,
but depending on the nature of the changes, it may be impossible to subsequently downgrade to an earlier version. To
perform an upgrade, issue the following command:

20 Chapter 4. Kea Database Administration

Kea Administrator Reference Manual Documentation, Release 1.7.0

$ kea—-admin db-upgrade mysqgl -u database-user -p database-password -n database-name

4.3.3 PostgreSQL

PostgreSQL is able to store leases, host reservations, and options defined on a per-host basis. This step can be safely

ignored if other database backends will be used.

First-Time Creation of the PostgreSQL Database

The first task is to create both the database and the user under which the servers will access it. A number of steps are

required:

1. Log into PostgreSQL as “root”:

$ sudo -u postgres psql postgres
Enter password:
postgres=#

2. Create the database:

postgres=# CREATE DATABASE database-name;
CREATE DATABASE
postgres=#

(database-name is the name chosen for the database.)

3. Create the user under which Kea will access the database (and give it a password), then grant it access to the

database:

postgres=# CREATE USER user-name WITH PASSWORD 'password';

CREATE ROLE

postgres=# GRANT ALL PRIVILEGES ON DATABASE database-name TO user-name;
GRANT

postgres=#

4. Exit PostgreSQL:

postgres=# \q
Bye
$

5. At this point, create the database tables either using the kea—admin tool, as explained in the next section (rec-
ommended), or manually. To create the tables manually, enter the following command. Note that PostgreSQL
will prompt the administrator to enter the new user’s password that was specified in Step 3. When the command

completes, Kea will return to the shell prompt. The output should be similar to the following:

$ psgl -d database-name -U user—-name -f path-to-kea/share/kea/scripts/pgsql/
—dhcpdb_create.pgsqgl

Password for user user—name:

CREATE TABLE

CREATE INDEX

CREATE INDEX

CREATE TABLE

CREATE INDEX

CREATE TABLE

4.3. Supported Backends

21

Kea Administrator Reference Manual Documentation, Release 1.7.0

START TRANSACTION
INSERT 0 1

INSERT 0 1

INSERT 0 1

COMMIT

CREATE TABLE
START TRANSACTION
INSERT 0 1

COMMIT

$

(path-to-kea is the location where Kea is installed.)

If instead an error is encountered, such as:

psgl: FATAL: no pg_hba.conf entry for host "[locall]", user "user-name", database
—"database-name", SSL off

the PostgreSQL configuration will need to be altered. Kea uses password authentication when connect-
ing to the database and must have the appropriate entries added to PostgreSQL’s pg_hba.conf file. This file
is normally located in the primary data directory for the PostgreSQL server. The precise path may vary de-
pending on the operating system and version, but the default location for PostgreSQL 9.3 on Centos 6.5 is:
/var/1lib/pgsgl/9.3/data/pg_hba.conf.

Assuming Kea is running on the same host as PostgreSQL, adding lines similar to the following should be
sufficient to provide password-authenticated access to Kea’s database:

local database—name user—name password
host database—name user-name 127.0.0.1/32 password
host database—name user—-name ::1/128 password

These edits are primarily intended as a starting point, and are not a definitive reference on PostgreSQL admin-
istration or database security. Please consult the PostgreSQL user manual before making these changes, as they
may expose other databases that are running. It may be necessary to restart PostgreSQL in order for the changes
to take effect.

Initialize the PostgreSQL Database Using kea-admin

If the tables were not created manually, do so now by running the kea—admin tool:

$ kea-admin db-init pgsgl -u database-user -p database-password -n database-name

Do not do this if the tables were already created manually. kea—admin implements rudimentary checks; it will refuse
to initialize a database that contains any existing tables. To start from scratch, all data must be removed manually. (This
process is a manual operation on purpose, to avoid possibly irretrievable mistakes by kea-admin.)

Upgrading a PostgreSQL Database from an Earlier Version of Kea

The PostgreSQL database schema can be upgraded using the same tool and commands as described in Upgrading a
MySQL Database from an Earlier Version of Kea, with the exception that the “pgsql” database backend type must be
used in the commands.

Use the following command to check the current schema version:

$ kea—-admin db-version pgsgl -u database-user —-p database-password -n database—name

22 Chapter 4. Kea Database Administration

Kea Administrator Reference Manual Documentation, Release 1.7.0

Use the following command to perform an upgrade:

$ kea-admin db-upgrade pgsgl -u database-user -p database-password -n database-name

4.3.4 Cassandra

Cassandra (sometimes for historical reasons referred to in documentation and commands as CQL) is the newest back-
end added to Kea; initial development was contributed by Deutsche Telekom. The Cassandra backend is able to store
leases, host reservations, and options defined on a per-host basis.

Cassandra must be properly set up if Kea is to store information in it. This section can be safely ignored if the data
will be stored in other backends.

First-Time Creation of the Cassandra Database

When setting up the Cassandra database for the first time, the keyspace area within it must be created. This needs to
be done manually; it cannot be performed by kea—admin.

To create the database:

1. Export CQLSH_HOST environment variable:

$ export CQLSH _HOST=localhost

2. Log into CQL:

$ cglsh
cql>

3. Create the CQL keyspace:

cgl> CREATE KEYSPACE keyspace-name WITH replication = {'class' : 'SimpleStrategy',
—'replication_factor' : 1};

(keyspace-name is the name chosen for the keyspace.)

4. At this point, the database tables can be created. (It is also possible to exit Cassandra and create the tables using
the kea—admin tool, as explained below.) To do this:

’cqslh -k keyspace-name —-f path-to-kea/share/kea/scripts/cql/dhcpdb_create.cql

(path-to-kea is the location where Kea is installed.)

If the tables were not created in Step 4, do so now by running the kea—-admin tool:

’$ kea—-admin db-init cgl -n database-name

Do not do this if the tables were created in Step 4. kea—admin implements rudimentary checks; it will refuse to
initialize a database that contains any existing tables. To start from scratch, all data must be removed manually. (This
process is a manual operation on purpose, to avoid possibly irretrievable mistakes by kea—admin.)

Upgrading a Cassandra Database from an Earlier Version of Kea

Sometimes a new Kea version may use a newer database schema, so the existing database will need to be upgraded.
This can be done using the kea—admin db-upgrade command.

4.3. Supported Backends 23

Kea Administrator Reference Manual Documentation, Release 1.7.0

To check the current version of the database, use the following command:

$ kea-admin db-version cgl -n database-name

(See Databases and Database Version Numbers for a discussion about versioning.) If the version does not match the
minimum required for the new version of Kea (as described in the release notes), the database needs to be upgraded.

Before upgrading, please make sure that the database is backed up. The upgrade process does not discard any data,
but depending on the nature of the changes, it may be impossible to subsequently downgrade to an earlier version. To
perform an upgrade, issue the following command:

$ kea—admin db-upgrade cgl -n database—name

4.3.5 Using Read-Only Databases with Host Reservations

If a read-only database is used for storing host reservations, Kea must be explicitly configured to operate on the
database in read-only mode. Sections Using Read-Only Databases for Host Reservations with DHCPv4 and Using
Read-Only Databases for Host Reservations with DHCPv6 describe when such a configuration may be required, and
how to configure Kea to operate in this way for both DHCPv4 and DHCPv6.

4.3.6 Limitations Related to the Use of SQL Databases

Year 2038 Issue

The lease expiration time is stored in the SQL database for each lease as a timestamp value. Kea developers observed
that the MySQL database doesn’t accept timestamps beyond 2147483647 seconds (the maximum signed 32-bit num-
ber) from the beginning of the UNIX epoch (00:00:00 on 1 January 1970). Some versions of PostgreSQL do accept
greater values, but the value is altered when it is read back. For this reason, the lease database backends put a restric-
tion on the maximum timestamp to be stored in the database, which is equal to the maximum signed 32-bit number.
This effectively means that the current Kea version cannot store leases whose expiration time is later than 2147483647
seconds since the beginning of the epoch (around year 2038). This will be fixed when the database support for longer
timestamps is available.

24 Chapter 4. Kea Database Administration

CHAPTER
FIVE

KEA CONFIGURATION

Kea uses JSON structures to represent server configurations. The following sections describe how the configuration
structures are organized.

5.1 JSON Configuration

JSON is the notation used throughout the Kea project. The most obvious usage is for the configuration file, but JSON
is also used for sending commands over the Management API (see Management API) and for communicating between
DHCP servers and the DDNS update daemon.

Typical usage assumes that the servers are started from the command line, either directly or using a script, e.g.
keactrl. The configuration file is specified upon startup using the -c parameter.

5.1.1 JSON Syntax

Configuration files for the DHCPv4, DHCPv6, DDNS, Control Agent, and NETCONF modules are defined in an
extended JSON format. Basic JSON is defined in RFC 7159 and ECMA 404. In particular, the only boolean values
allowed are true or false (all lowercase). The capitalized versions (True or False) are not accepted.

Kea components use an extended JSON with additional features allowed:
* shell comments: any text after the hash (#) character is ignored.
* C comments: any text after the double slashes (//) character is ignored.
* Multiline comments: any text between /* and */ is ignored. This commenting can span multiple lines.
* File inclusion: JSON files can include other JSON files by using a statement of the form <?include “file.json”?>.

The configuration file consists of a single object (often colloquially called a map) started with a curly bracket. It
comprises one or more of the “Dhcp4”, “Dhcp6”, “DhcpDdns”, “Control-agent”, and “Netconf” objects. It is possible
to define additional elements but they will be ignored.

A very simple configuration for DHCPv4 could look like this:

The whole configuration starts here.

{

DHCPv4 specific configuration starts here.

"Dhcp4d": {
"interfaces—-config": {
"interfaces": ["ethO" 1],
"dhcp-socket-type": "raw"

by
"valid-lifetime": 4000,

25

https://tools.ietf.org/html/rfc7159
https://www.ecma-international.org/publications/standards/Ecma-404.htm

Kea Administrator Reference Manual Documentation, Release 1.7.0

"renew—-timer": 1000,

"rebind-timer": 2000,

"subnetd4": [{
"pools": [{ "pool": "192.0.2.1-192.0.2.200" } 1,
"subnet": "192.0.2.0/24"

I

Now loggers are inside the DHCPv4 object.

"loggers": [{
Hname" . "*",
"severity": "DEBUG"

H
}

The whole configuration structure ends here.

}

More examples are available in the installed share/doc/kea/examples directory.

Note: The “Logging” element is removed in Kea 1.6.0 and its contents (the “loggers” object) moved
inside the configuration objects (maps) for the respective Kea modules. For example: the “Dhcp4” map
contains the “loggers” object specifying logging configuration for the DHCPv4 server. Backward com-
patibility is maintained until at least Kea 1.7.0 release; it will be possible to specify the “Logging” object
at the top configuration level and “loggers” objects at the module configuration level. Ultimately, support
for the top-level “Logging” object will be removed.

The specification of several supported elements (e.g. “Dhcp4”, “Dhcp6”) in a single configuration file can
be confusing and works badly with the commands that fetch and write new configurations. Support for it
will be removed in a future release of Kea, after which each component will require its own configuration
file.

To avoid repetition of mostly similar structures, examples in the rest of this guide will showcase only the subset of
parameters appropriate for a given context. For example, when discussing the IPv6 subnets configuration in DHCPv6,
only subnet6 parameters will be mentioned. It is implied that the remaining elements (the global map that holds Dhcp6
and Logging) are present, but they are omitted for clarity. Usually, locations where extra parameters may appear are
denoted by an ellipsis (...).

5.1.2 Simplified Notation

It is sometimes convenient to refer to a specific element in the configuration hierarchy. Each hierarchy level is separated
by a slash. If there is an array, a specific instance within that array is referenced by a number in square brackets (with
numbering starting at zero). For example, in the above configuration the valid-lifetime in the Dhcp4 component
can be referred to as Dhcp4/valid-lifetime and the pool in the first subnet defined in the DHCPv4 configuration as
Dhcp4/subnet4[0]/pool.

5.2 Kea Configuration Backend

5.2.1 Applicability

Kea Configuration Backend (abbreviated as CB) is a feature first introduced in the 1.6.0 release, which provides Kea
servers with the ability to manage and fetch their configuration from one or more databases. In the documentation, the

26 Chapter 5. Kea Configuration

Kea Administrator Reference Manual Documentation, Release 1.7.0

term “Configuration Backend” may also refer to the particular Kea module providing support to manage and fetch the
configuration information from the particular database type. For example: MySQL Configuration Backend is the logic
implemented within the “mysql_cb” hooks library which provides a complete set of functions to manage and fetch the
configuration information from the MySQL database.

In small deployments, e.g. those comprising a single DHCP server instance with limited and infrequently changing
number of subnets, it may be impractical to use the CB as a configuration repository because it requires additional
third-party software to be installed and configured - in particular the MySQL server and MySQL client. Once the
number of DHCP servers and/or the number of managed subnets in the network grows, the usefulness of the CB
becomes obvious.

A good example of a use case for the CB is a pair of Kea DHCP servers which can be configured to support High
Auvailability as described in ha: High Availability. The configurations of both servers (including the value of the
server—tag parameter) are almost exactly the same. They may differ by the server identifier and designation of
the server as a primary or standby (or secondary). They may also differ by the interfaces configuration. Typically, the
subnets, shared networks, option definitions, global parameters are the same for both servers and can be sourced from
a single database instance to both Kea servers.

Using the database as a single source of configuration for subnets and/or other configuration information supported by
the CB has the advantage that any modifications to the configuration in the database are automatically applied to both
servers.

Another case when the centralized configuration repository is desired is in deployments including a large number of
DHCEP servers, possibly using a common lease database to provide redundancy. New servers can be added to the
pool frequently to fulfill growing scalability requirements. Adding a new server does not require replicating the entire
configuration to the new server when a common database is used.

Using the database as a configuration repository for Kea servers also brings other benefits, such as:
* the ability to use database specific tools to access the configuration information,
* the ability to create customized statistics based on the information stored in the database, and

* the ability to backup the configuration information using the database’s built-in replication mechanisms.

5.2.2 CB Capabilities and Limitations

Kea CB, introduced in the 1.6.0 release, comes with a number of limitations as a result of the overall complexity of
this feature and the development time constraints. This feature will evolve over time and the new capabilities will be
added in subsequent releases. In this section we present the capabilities and limitations of the CB in the Kea 1.6.0
release:

¢ Kea CB is supported for the MySQL database only.

* Kea CB is only supported for DHCPv4 and DHCPv6 servers. Neither the Control Agent nor the D2 daemon
can be configured via the database.

* Potential configurations to be stored for the DHCP servers include: global parameters, option definitions, global
options, shared networks, and subnets. Other configuration parameters are not stored in the database and must
be configured via the JSON configuration file.

Note: We strongly recommend against duplication of the configuration information in the file and the database. For
example, when specifying subnets for the DHCP server, please store them in either the configuration backend or in the
configuration file, not both. Storing some subnets in the database and others in the file may put you at risk of potential
configuration conflicts. Note that the configuration instructions from the database take precedence over instructions
from the file, so it is possible that parts of the configuration specified in the file may be overridden if contradicted by
information in the database.

5.2. Kea Configuration Backend 27

Kea Administrator Reference Manual Documentation, Release 1.7.0

Note: It is recommended that the subnet_cmds hooks library not be used to manage the subnets when the config-
uration backend is used as a source of information about the subnets. The subnet_cmds hooks library modifies the
local subnets configuration in the server’s memory, not in the database. Use the cb_cmds hooks library to manage
the subnets information in the database instead.

5.2.3 CB Components

In order to use the Kea CB feature, the Kea 1.6.0 version or later is required. The mysgl_cb open source hooks
library implementing the Configuration Backend for MySQL must be compiled and loaded by the DHCP servers.
This hooks library is compiled when the ——with-mysqgl configuration switch is used during the Kea build. The
MySQL C client libraries must be installed, as explained in DHCP Database Installation and Configuration.

Note: Any existing MySQL schema must be upgraded to the latest schema required by the particular Kea version
using the kea—-admin tool, as described in The kea-admin Tool.

The cb_cmds premium hooks library, which is available to ISC’s paid support customers, provides a complete set
of commands to manage the servers’ configuration information within the database. This library can be attached to
both DHCPv4 and DHCPv6 server instances. It is still possible to manage the configuration information without the
cb_cmds hooks library with commonly available tools, such as MySQL Workbench or the command-line MySQL
client, by directly working with the database.

Refer to cb_cmds: Configuration Backend Commands for the details regarding the cb_cmds hooks library.

The DHCPv4 and DHCPv6 server-specific configurations of the CB, as well as the list of supported configuration
parameters, can be found in Configuration Backend in DHCPv4 and Configuration Backend in DHCPv6 respectively.

5.2.4 Configuration Sharing and Server Tags

The configuration database is designed to store the configuration information for multiple Kea servers. Depending on
the use case, the entire configuration may be shared by all servers, parts of the configuration may be shared by multiple
servers and the rest of the configuration may be different for these servers or, finally, each server may have its own
non-shared configuration.

The configuration elements in the database are associated with the servers by “server tags”. The server tag is an
arbitrary string holding the name of the Kea server instance. The tags of the DHCPv4 and DHCPv6 servers are inde-
pendent in the database, i.e. the same server tag can be created for the DHCPv4 and the DHCPv6 server respectively.
The value is configured using server—tag parameter in the Dhcp4 or Dhep6 scope. The current server-tag can be
checked with the server-tag-get command.

The server definition, which consists of the server tag and the server description, must be stored in the configuration
database prior to creating the dedicated configuration for that server. In cases when all servers use the same configura-
tion, e.g. a pair of servers running as the High Availability peers, there is no need to configure the server tags for these
servers in the database. The database by default includes the logical server all, which is used as a keyword to indicate
that the particular piece of configuration must be shared between all servers connecting to the database. The all server
can’t be deleted or modified. It is not even returned among other servers as a result of the remote-server[46]-get-all
commands. Also, slightly different rules may apply to “all” keyword than to any user defined server when running the
commands provided by the cb_cmds hooks library cb_cmds: Configuration Backend Commands.

In the simplest case there are no server tags defined in the configuration database and all connecting servers will get the
same configuration regardless of the server tag they are using. The server tag that the particular Kea instance presents
to the database to fetch its configuration is specified in the Kea configuration file, using the config-control map (please
refer to the Enabling Configuration Backend and Enabling Configuration Backend for details).

28 Chapter 5. Kea Configuration

Kea Administrator Reference Manual Documentation, Release 1.7.0

All Kea instances presenting the same server tag to the configuration database are given the same configuration. It
is the administrator’s choice whether multiple Kea instances use the same server tag or each Kea instance is using a
different sever tag. Also, there is no requirement that the instances running on the same physical or virtual machine
use the same server tag. It is even possible to configure the Kea server without assigning it a server tag. In such case
the server will be given the configuration specified for “all” servers.

In order to differentiate the configurations between the Kea servers, a collection of the server tags used by the servers
must be stored in the database. For the DHCPv4 and DHCPv6 servers, it can be done using the commands described
in remote-serverd-set, remote-server6-set commands and remote-serverd-set, remote-server6-set commands. Next,
the server tags can be used to associate the configuration information with the servers. However, it is important
to note that some DHCP configuration elements may be associated with multiple server tags and other configuration
elements may be associated with exactly one server tag. The former configuration elements are referred to as shareable
configuration elements and the latter are referred to as non-shareable configuration elements. The Configuration
Backend in DHCPv4 and Configuration Backend in DHCPv6 list the DHCP specific shareable and non-shareable
configuration elements. However, in this section we want to briefly explain the difference between them.

The shareable configuration element is the one having some unique property identifying it and which instance may
appear only once in the database. An example of the shareable DHCP element is a subnet instance. The subnet is
a part of the network topology and we assume that the particular subnet may have only one definition within this
network. The subnet has two unique identifiers: subnet id and the subnet prefix. The subnet identifier is used in Kea to
uniquely identify the subnet and to connect it with other configuration elements, e.g. in host reservations. The subnet
identifier uniquely identifies the subnet within the network. Some commands provided by the cb_cmds hooks library
allow for accessing the subnet information by subnet identifier (or prefix) and explicitly prohibit using the server tag
to access the subnet. This is because, in a general case, the subnet definition is associated with multiple servers rather
than single server. In fact, it may even be associated with no servers (unassigned). Still, the unassigned subnet has an
identifier and prefix which can be used to access the subnet.

A shareable configuration element may be associated with multiple servers, one server or no servers. Deletion of the
server which is associated with the shareable element does not cause the deletion of the shareable element. It merely
deletes the association of the deleted server with the element.

Unlike the shareable element, the non-shareable element must not be explicitly associated with more than one server
and must not exist after the server is deleted (must not remain unassigned). The non-shareable element only exists
within the context of the server. An example of the non-shareable element in DHCP is a global parameter, e.g.
renew-timer. The renew timer is the value to be used by the particular server and only this server. Other servers may
have their respective renew timers set to the same or different value. The renew timer is the parameter which has no
unique identifier by which it could be accessed, modified or otherwise used. The global parameters like the renew
timer can be accessed by the parameter name and the tag of the server for which they are configured. For example:
the commands described in The remote-global-parameterd-get, remote-global-parameter6-get Commands allow for
fetching the value of the global parameter by the parameter name and the server name. Getting the global parameter
only by its name (without specifying the server tag) is not possible because there may be many global parameters with
the given name in the database.

When the server associated with a non-shareable configuration element is deleted, the configuration element is auto-
matically deleted from the database along with the server because the non-shareable element must be always assigned
to some server (or the logical server “all’”).

The terms “shareable” and “non-shareable” only apply to the associations with user defined servers. All configuration
elements associated with the logical server “all” are by definition shareable. For example: the renew-timer associated
with “all” servers is used by all servers connecting to the database which don’t have their specific renew timers
defined. In the special case, when none of the configuration elements are associated with user defined servers, the
entire configuration in the database is shareable because all its pieces belong to “all” servers.

Note: Be very careful when associating the configuration elements with different server tags. The configuration
backend doesn’t protect you against some possible misconfigurations that may arise from the wrong server tags’
assignments. For example: if you assign a shared network to one server and the subnets belonging to this shared

5.2. Kea Configuration Backend 29

Kea Administrator Reference Manual Documentation, Release 1.7.0

network to another server, the servers will fail upon trying to fetch and use this configuration. The server fetching the
subnets will be aware that the subnets are associated with the shared network but the shared network will not be found
by this server as it doesn’t belong to it. In such case, both the shared network and the subnets should be assigned to
the same set of servers.

30 Chapter 5. Kea Configuration

CHAPTER
SIX

MANAGING KEA WITH KEACTRL

6.1 Overview

keactrl is a shell script which controls the startup, shutdown, and reconfiguration of the Kea servers (kea-dhcp4,
kea-dhcp6, kea-dhcp—-ddns, kea-ctrl-agent, and kea—-netconf). It also provides the means for check-
ing the current status of the servers and determining the configuration files in use.

6.2 Command Line Options

keactrl is run as follows:

’# keactrl <command> [-c keactrl-config-file] [-s server|[,server,...]]

<command> is one of the commands described in Commands.

The optional —c keactrl-config-file switch allows specification of an alternate keactrl configuration
file. (-—ctrl-configisasynonym for —c.) In the absence of —c, keactrl will use the default configuration file
[kea—-install-dir]/etc/kea/keactrl.conf.

The optional -s server|[, server, .. .] switch selects the servers to which the command is issued. (—-server
is a synonym for —s.) If absent, the command is sent to all servers enabled in the keactr] configuration file. If multiple
servers are specified, they should be separated by commas with no intervening spaces.

6.3 The keactrl Configuration File

Depending on requirements, not all of the available servers need to be run. The keactrl configu-
ration file sets which servers are enabled and which are disabled. @ The default configuration file is
[kea-install-dir]/etc/kea/keactrl.conf, but this can be overridden on a per-command basis using
the —c switch.

The contents of keactrl.conf are:

This is a configuration file for keactrl script which controls
the startup, shutdown, reconfiguration and gathering the status
of the Kea's processes.

=

prefix holds the location where the Kea is installed.
prefix=@prefix@

Location of Kea configuration file.

31

Kea Administrator Reference Manual Documentation, Release 1.7.0

config file=@sysconfdir@/@PACKAGER/kea—dhcpd.conf
~onfig_file=@sysconfdir@/Q@PACKAGE@/kea-dhcp6.conf
cp_ddns_config_file=Q@sysconfdir@/@PACKAGER/kea-dhcp—-ddns.conf
kea_ ctrl agent config file=@sysconfdir@/@PACKAGEQ/kea-ctrl-agent.conf
kea_netconf_config_ file=@sysconfdir@/@PACKAGER/kea-netconf.conf

Location of Kea binaries.
exec_prefix=Q@exec_prefixQ@
srv=Q@sbindir@/kea-dhcp4
srv=@sbindir@/kea-dhcp6
srv=@sbindir@/kea-dhcp-ddns
rv=@sbindir@/kea-ctrl-agent
netconf_ srv=Q@sbindir@/kea—-netconf

Start DHCPv4 server?
dhcpé4=yes

Start DHCPv6 server?
dhcpbo=yes

Start DHCP DDNS server?
dhcp_ddns=no

Start Control Agent?
ctrl _agent=yes

Start Netconf?

netconf=no

Be verbose?

kea_verbose=no

Note: In the example above, strings of the form @something@ are replaced by the appropriate values
when Kea is installed.

The dhcp4, dhcp6, dhcp_ddns, ctrl_agent, and netconf parameters set to “yes” will configure keactrl
to manage (start, reconfigure) all servers, i.e. kea-dhcp4, kea-dhcp6, kea-dhcp-ddns, kea-ctrl-agent,
and kea-netconf. When any of these parameters is set to “no”, the keactrl will ignore the corresponding server
when starting or reconfiguring Kea. Some daemons (ddns and netconf) are disabled by default.

By default, Kea servers managed by keactrl are located in [kea—install-dir]/sbin. This should work for
most installations. If the default location needs to be altered for any reason, the paths specified with the dhcp4_srv,
dhcp6_srv, dhcp_ddns_srv, ctrl_agent_srv, and netconf_srv parameters should be modified.

The kea_verbose parameter specifies the verbosity of the servers being started. When kea_verbose is set to
“yes” the logging level of the server is set to DEBUG. Modification of the logging severity in a configuration file, as
described in Logging, will have no effect as long as the kea_verbose is set to “yes.” Setting it to “no” will cause
the server to use the logging levels specified in the Kea configuration file. If no logging configuration is specified, the
default settings will be used.

Note: The verbosity for the server is set when it is started. Once started, the verbosity can be only
changed by stopping the server and starting it again with the new value of the kea_verbose parameter.

32 Chapter 6. Managing Kea with keactrl

Kea Administrator Reference Manual Documentation, Release 1.7.0

6.4 Commands

The following commands are supported by keactrl:
e start - starts selected servers.
* stop - stops all running servers.
* reload - triggers reconfiguration of the selected servers by sending the SIGHUP signal to them.
* status - returns the status of the servers (active or inactive) and the names of the configuration files in use.
* version - prints out the version of the keactrl tool itself, together with the versions of the Kea daemons.

Typical output from keactrl when starting the servers looks similar to the following:

$ keactrl start

INFO/keactrl: Starting kea-dhcp4 -c /usr/local/etc/kea/kea-dhcp4.conf -d
INFO/keactrl: Starting kea-dhcp6 -c /usr/local/etc/kea/kea-dhcp6.conf —-d
INFO/keactrl: Starting kea-dhcp-ddns -c /usr/local/etc/kea/kea-dhcp-ddns.conf -d
INFO/keactrl: Starting kea-ctrl-agent -c /usr/local/etc/kea/kea-ctrl-agent.conf -d
INFO/keactrl: Starting kea-netconf -c /usr/local/etc/kea/kea-netconf.conf -d

Kea’s servers create PID files upon startup. These files are used by keactr] to determine whether a given server is
running. If one or more servers are running when the start command is issued, the output will look similar to the
following:

$ keactrl start

INFO/keactrl: kea-dhcp4 appears to be running, see: PID 10918, PID file: /usr/local/
—var/run/kea/kea.kea-dhcp4d.pid.

INFO/keactrl: kea-dhcp6 appears to be running, see: PID 10924, PID file: /usr/local/
—var/run/kea/kea.kea-dhcp6.pid.

INFO/keactrl: kea-dhcp-ddns appears to be running, see: PID 10930, PID file: /usr/
—local/var/run/kea/kea.kea-dhcp-ddns.pid.

INFO/keactrl: kea-ctrl-agent appears to be running, see: PID 10931, PID file: /usr/
—local/var/run/kea/kea.kea-ctrl-agent.pid.

INFO/keactrl: kea-netconf appears to be running, see: PID 10123, PID file: /usr/local/
—var/run/kea/kea.kea-netconf.pid.

During normal shutdowns these PID files are deleted. They may, however, be left over as remnants following a system
crash. It is possible, though highly unlikely, that upon system restart the PIDs they contain may actually refer to
processes unrelated to Kea. This condition will cause keactrl to decide that the servers are running, when in fact they
are not. In such a case the PID files listed in the keactr]l output must be manually deleted.

The following command stops all servers:

$ keactrl stop

INFO/keactrl: Stopping kea—-dhcp4d...
INFO/keactrl: Stopping kea-dhcp6...
INFO/keactrl: Stopping kea-dhcp-ddns...
INFO/keactrl: Stopping kea-ctrl-agent...
INFO/keactrl: Stopping kea-netconf...

Note that the stop command will attempt to stop all servers regardless of whether they are ‘“enabled” in
keactrl.conf. If any of the servers are not running, an informational message is displayed as in the stop
command output below.

$ keactrl stop
INFO/keactrl: kea-dhcp4 isn't running.
INFO/keactrl: kea-dhcp6 isn't running.

6.4. Commands 33

Kea Administrator Reference Manual Documentation, Release 1.7.0

INFO/keactrl: kea-dhcp-ddns isn't running.
INFO/keactrl: kea-ctrl-agent isn't running.
INFO/keactrl: kea-netconf isn't running.

As already mentioned, the reconfiguration of each Kea server is triggered by the SIGHUP signal. The reload com-
mand sends the SIGHUP signal to any servers that are enabled in the keact r1 configuration file and that are currently
running. When a server receives the SIGHUP signal it re-reads its configuration file and, if the new configuration is
valid, uses the new configuration. A reload is executed as follows:

$ keactrl reload

INFO/keactrl: Reloading kea—-dhcp4...
INFO/keactrl: Reloading kea-dhcp6. ..
INFO/keactrl: Reloading kea-dhcp-ddns...
INFO/keactrl: Reloading kea-ctrl-agent...

If any of the servers are not running, an informational message is displayed as in the reload command output below.
Note that as of version 1.5.0, kea-netconf does not support the SIGHUP signal. If its configuration has changed, please
stop and restart it for the change to take effect. This limitation will be removed in a future release.

$ keactrl stop

INFO/keactrl: kea-dhcp4 isn't running.
INFO/keactrl: kea-dhcp6 isn't running.
INFO/keactrl: kea-dhcp-ddns isn't running.
INFO/keactrl: kea-ctrl—-agent isn't running.
INFO/keactrl: kea-netconf isn't running.

Note: NETCONEF is an optional feature that is disabled by default and can be enabled during compilation. If Kea
was compiled without NETCONF support, keactrl will do its best to not bother the user with information about it.
The NETCONF entries will still be present in the keactrl.conf file, but NETCONF status will not be shown and other
commands will ignore it.

Note: Currently keactrl does not report configuration failures when the server is started or reconfigured. To check
if the server’s configuration succeeded, the Kea log must be examined for errors. By default, this is written to the
syslog file.

Sometimes it is useful to check which servers are running. The status command reports this, with typical output
that looks like:

$ keactrl status

DHCPv4 server: active

DHCPv6 server: inactive

DHCP DDNS: active

Control Agent: active

Netconf agent: inactive

Kea configuration file: /usr/local/etc/kea/kea.conf

Kea DHCPv4 configuration file: /usr/local/etc/kea/kea-dhcp4.conf

Kea DHCPv6 configuration file: /usr/local/etc/kea/kea-dhcp6.conf

Kea DHCP DDNS configuration file: /usr/local/etc/kea/kea-dhcp-ddns.conf
Kea Control Agent configuration file: /usr/local/etc/kea/kea-ctrl-agent.conf
Kea Netconf configuration file: /usr/local/etc/kea/kea-netconf.conf
keactrl configuration file: /usr/local/etc/kea/keactrl.conf

34 Chapter 6. Managing Kea with keactrl

Kea Administrator Reference Manual Documentation, Release 1.7.0

6.5 Overriding the Server Selection

The optional —s switch allows the selection of the server(s) to which the keactrl command is issued. For example,
the following instructs keact rl to stop the kea—dhcp4 and kea-dhcp6 servers and leave the kea-dhcp—-ddns
and kea-ctrl-agent running:

’$ keactrl stop -s dhcp4,dhcp6

Similarly, the following will start only the kea-dhcp4 and kea—-dhcp-ddns servers, but not kea-dhcp6 or
kea-ctrl-agent.

’$ keactrl start -s dhcp4,dhcp_ddns

Note that the behavior of the —s switch with the start and reload commands is different from its behavior with
the stop command. On start and reload, keactrl will check if the servers given as parameters to the —s
switch are enabled in the keactrl configuration file; if not, the server will be ignored. For stop, however, this
check is not made; the command is applied to all listed servers, regardless of whether they have been enabled in the
file.

The following keywords can be used with the —s command line option:
¢ dhcp4 for kea-dhcp4.
¢ dhcp6 for kea—-dhcp6.
¢ dhcp_ddns for kea-dhcp—-ddns.
e ctrl_agent for kea-ctrl-agent.
* netconf for kea-netconf.

e all for all servers (default).

6.5. Overriding the Server Selection 35

Kea Administrator Reference Manual Documentation, Release 1.7.0

36 Chapter 6. Managing Kea with keactrl

CHAPTER
SEVEN

THE KEA CONTROL AGENT

7.1 Overview of the Kea Control Agent

The Kea Control Agent (CA) is a daemon which exposes a RESTful control interface for managing Kea servers. The
daemon can receive control commands over HTTP and either forward these commands to the respective Kea servers
or handle these commands on its own. The determination whether the command should be handled by the CA or
forwarded is made by checking the value of the “service” parameter, which may be included in the command from
the controlling client. The details of the supported commands, as well as their structures, are provided in Management
API.

The CA can use hook libraries to provide support for additional commands or custom behavior of existing commands.
Such hook libraries must implement callouts for the “control_command_receive” hook point. Details about creating
new hook libraries and supported hook points can be found in the Kea Developer’s Guide.

The CA processes received commands according to the following algorithm:

» Pass command into any installed hooks (regardless of service value(s)). If the command is handled by a hook,
return the response.

* If the service specifies one more or services, forward the command to the specified services and return the
accumulated responses.

« If the service is not specified or is an empty list, handle the command if the CA supports it.

7.2 Configuration

The following example demonstrates the basic CA configuration.

{
"Control-agent": {
"http-host": "10.20.30.40",
"http-port": 8080,

"control-sockets": {
"dhecpd": |
"comment": "main server",
"socket-type": "unix",
"socket-name": "/path/to/the/unix/socket-v4"
}I
"dhcpo": {
"socket-type": "unix",
"socket-name": "/path/to/the/unix/socket-ve",
"user-context": { "version": 3 }

37

https://jenkins.isc.org/job/Kea_doc/doxygen/

Kea Administrator Reference Manual Documentation, Release 1.7.0

}y

"dzll: {
"socket-type": "unix",
"socket—-name": "/path/to/the/unix/socket-d2"

s
}I

"hooks-libraries": [

{

"library": "/opt/local/control-agent—-commands.so",
"parameters": {
"paraml": "foo"

}
Pl

"loggers": [{
"name": "kea-ctrl-agent",
"severity": "INFO"

The http-host and http-port parameters specify an IP address and port to which HTTP service will
be bound. In the example configuration provided above, the RESTful service will be available under
the URL of http://10.20.30.40:8080/. If these parameters are not specified, the default URL is
http://127.0.0.1:8000/.

As mentioned in Overview of the Kea Control Agent, the CA can forward received commands to the Kea servers for
processing. For example, config—get is sent to retrieve the configuration of one of the Kea services. When the CA
receives this command, including a service parameter indicating that the client wishes to retrieve the configuration
of the DHCPv4 server, the CA forwards the command to that server and passes the received response back to the
client. More about the service parameter and the general structure of commands can be found in Management API.

The CA uses UNIX domain sockets to forward control commands and receive responses from other Kea services. The
dhcp4, dhcp6, and d2 maps specify the files to which UNIX domain sockets are bound. In the configuration above,
the CA will connect to the DHCPv4 server via /path/to/the/unix/socket-v4 to forward the commands to
it. Obviously, the DHCPv4 server must be configured to listen to connections via this same socket. In other words, the
command socket configuration for the DHCPv4 server and the CA (for this server) must match. Consult Management
API for the DHCPv4 Server, Management API for the DHCPv6 Server and Management API for the D2 Server to
learn how the socket configuration is specified for the DHCPv4, DHCPv6, and D2 services.

Warning: “dhcp4-server”, “dhcpb6-server”, and “d2-server” were renamed to “dhcp4”, “dhcp6”, and “d2” respec-
tively in Kea 1.2. If you are migrating from Kea 1.2, you must modify your CA configuration to use this new
naming convention.

User contexts can store arbitrary data as long as they are in valid JSON syntax and their top-level element is a map
(i.e. the data must be enclosed in curly brackets). Some hook libraries may expect specific formatting; please consult
the relevant hook library documentation for details.

User contexts can be specified on either global scope, control socket, or loggers. One other useful feature is the ability
to store comments or descriptions; the parser translates a “comment” entry into a user context with the entry, which
allows a comment to be attached within the configuration itself.

Hooks libraries can be loaded by the Control Agent in the same way as they are loaded by the DHCPv4 and DHCPv6
servers. The CA currently supports one hook point - “control_command_receive” - which makes it possible to delegate

38 Chapter 7. The Kea Control Agent

Kea Administrator Reference Manual Documentation, Release 1.7.0

processing of some commands to the hooks library. The hooks-1ibraries list contains the list of hooks libraries
that should be loaded by the CA, along with their configuration information specified with parameters.

Please consult Logging for the details how to configure logging. The CA’s root logger’s name is kea-ctrl-agent,
as given in the example above.

7.3 Secure Connections

The Control Agent does not natively support secure HTTP connections like SSL or TLS. In order to setup a secure
connection, please use one of the available third-party HTTP servers and configure it to run as a reverse proxy to the
Control Agent. Kea has been tested with two major HTTP server implentations working as a reverse proxy: Apache2
and nginx. Example configurations, including extensive comments, are provided in the doc/examples/https/
directory.

The reverse proxy forwards HTTP requests received over a secure connection to the Control Agent using unsecured
HTTP. Typically, the reverse proxy and the Control Agent are running on the same machine, but it is possible to config-
ure them to run on separate machines as well. In this case, security depends on the protection of the communications
between the reverse proxy and the Control Agent.

Apart from providing the encryption layer for the control channel, a reverse proxy server is also often used for au-
thentication of the controlling clients. In this case, the client must present a valid certificate when it connects via
reverse proxy. The proxy server authenticates the client by checking whether the presented certificate is signed by the
certificate authority used by the server.

To illustrate this, the following is a sample configuration for the nginx server running as a reverse proxy to the Kea
Control Agent. The server enables authentication of the clients using certificates.

The server certificate and key can be generated as follows:

openssl genrsa —-des3 —-out kea-proxy.key 4096
openssl req —-new -x509 -days 365 -key kea-proxy.key -out kea-proxy.crt

The CA certificate and key can be generated as follows:

openssl genrsa —-des3 -out ca.key 4096
openssl req —-new -x509 -days 365 —-key ca.key —-out ca.crt

The client certificate needs to be generated and signed:

openssl genrsa —-des3 —-out kea-client.key 4096

openssl req —new —-key kea-client.key -out kea-client.csr

openssl x509 -req —-days 365 —-in kea-client.csr —-CA ca.crt \
—-CAkey ca.key -set_serial 01 -out kea-client.crt

Note that the "common name" value used when generating the client
and the server certificates must differ from the value used
for the CA certificate.

The client certificate must be deployed on the client system.
In order to test the proxy configuration with "curl", run a
command similar to the following:

curl -k —--key kea-client.key —--cert kea-client.crt -X POST \
-H Content-Type:application/json —-d '{ "command": "list-commands" }' \
https://kea.example.org/kea

S T e Y T R Y T S R T R R T R R T R R R R R R R R R R W

7.3. Secure Connections 39

Kea Administrator Reference Manual Documentation, Release 1.7.0

#
#
nginx configuration starts here.
events {
}
http {
HTTPS server
server
Use default HTTPS port.
listen 443 ssl;
Set server name.

server_name kea.example.org;

Server certificate and key.
ssl_certificate /path/to/kea-proxy.crt;
ssl_certificate_key /path/to/kea-proxy.key;

Certificate Authority. Client certificate must be signed by the CA.
ssl_client_certificate /path/to/ca.crt;

Enable verification of the client certificate.
ssl_verify_client on;

For URLs such as https://kea.example.org/kea, forward the
requests to http://127.0.0.1:8080.
location /kea {

proxy_pass http://127.0.0.1:8080;

Note: Note that the configuration snippet provided above is for testing purposes only. It should be modified according
to the security policies and best practices of your organization.

When you use an HTTP client without TLS support as kea-shell, you can use an HTTP/HTTPS translator such as
stunnel in client mode. A sample configuration is provided in the doc/examples/https/shell/ directory.

7.4 Starting the Control Agent

The CA is started by running its binary and specifying the configuration file it should use. For example:

’$./kea-ctrl-agent -c /usr/local/etc/kea/kea-ctrl-agent.conf

It can be started by keactrl as well (see Managing Kea with keactrl).

7.5 Connecting to the Control Agent

For an example of a tool that can take advantage of the RESTful API, see The Kea Shell.

40 Chapter 7. The Kea Control Agent

CHAPTER
EIGHT

8.1

THE DHCPV4 SERVER

Starting and Stopping the DHCPv4 Server

It is recommended that the Kea DHCPv4 server be started and stopped using keactrl (described in Managing Kea
with keactrl); however, it is also possible to run the server directly. It accepts the following command-line switches:

—-c file - specifies the configuration file. This is the only mandatory switch.

—d - specifies whether the server logging should be switched to debug/verbose mode. In verbose mode, the
logging severity and debuglevel specified in the configuration file are ignored; “debug” severity and the maxi-
mum debuglevel (99) are assumed. The flag is convenient for temporarily switching the server into maximum
verbosity, e.g. when debugging.

-p server-port - specifies the local UDP port on which the server will listen. This is only useful during
testing, as a DHCPv4 server listening on ports other than the standard ones will not be able to handle regular
DHCPv4 queries.

-P client-port - specifies the remote UDP port to which the server will send all responses. This is only
useful during testing, as a DHCPv4 server sending responses to ports other than the standard ones will not be
able to handle regular DHCPv4 queries.

-t file - specifies a configuration file to be tested. Kea-dhcp4 will load it, check it, and exit. During
the test, log messages are printed to standard output and error messages to standard error. The result of the
test is reported through the exit code (0 = configuration looks ok, 1 = error encountered). The check is not
comprehensive; certain checks are possible only when running the server.

—v - displays the Kea version and exits.

-V - displays the Kea extended version with additional parameters and exits. The listing includes the versions
of the libraries dynamically linked to Kea.

—W - displays the Kea configuration report and exits. The report is a copy of the config. report file produced
by . /configure;itis embedded in the executable binary.

On startup, the server will detect available network interfaces and will attempt to open UDP sockets on all interfaces
mentioned in the configuration file. Since the DHCPv4 server opens privileged ports, it requires root access. This
daemon must be run as root.

During startup, the server will attempt to create a PID file of the form: [runstatedir]/kea/[conf name].kea-dhcp4.pid
where:

runstatedir: The value as passed into the build configure script; it defaults to “/usr/local/var/run”. Note
that this value may be overridden at runtime by setting the environment variable KEA_PIDFILE_DIR, although
this is intended primarily for testing purposes.

conf name: The configuration file name used to start the server, minus all preceding paths and the file exten-
sion. For example, given a pathname of “/usr/local/etc/kea/myconf.txt”, the portion used would be “myconf”.

41

Kea Administrator Reference Manual Documentation, Release 1.7.0

If the file already exists and contains the PID of a live process, the server will issue a DHCP4_ALREADY_RUNNING
log message and exit. It is possible, though unlikely, that the file is a remnant of a system crash and the process to
which the PID belongs is unrelated to Kea. In such a case it would be necessary to manually delete the PID file.

The server can be stopped using the k111 command. When running in a console, the server can also be shut down by
pressing ctrl-c. It detects the key combination and shuts down gracefully.

8.2 DHCPv4 Server Configuration

8.2.1 Introduction

This section explains how to configure the DHCPv4 server using a configuration file. Before DHCPv4 is started, its
configuration file must be created. The basic configuration is as follows:

{

DHCPv4 configuration starts on the next line
"Dhcpd": {

First we set up global values
"valid-lifetime": 4000,
"renew-timer": 1000,
"rebind-timer": 2000,

Next we set up the interfaces to be used by the server.
"interfaces-config": {
"interfaces": ["ethO"]
}y

And we specify the type of lease database
"lease—database": {
"type": "memfile",
"persist": true,
"name": "/var/lib/kea/dhcp4.leases"

}y

Finally, we list the subnets from which we will be leasing addresses.
"subnet4": [
{
"subnet": "192.0.2.0/24",
"pools": [
{
"pool": "192.0.2.1 - 192.0.2.200"

]
DHCPv4 configuration ends with the next line

}

The following paragraphs provide a brief overview of the parameters in the above example, along with their format.
Subsequent sections of this chapter go into much greater detail for these and other parameters.

The lines starting with a hash (#) are comments and are ignored by the server; they do not impact its operation in any
way.

42 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 1.7.0

The configuration starts in the first line with the initial opening curly bracket (or brace). Each configuration must
contain an object specifying the configuration of the Kea module using it. In the example above this object is called
Dhcp4.

Note: In the current Kea release it is possible to specify configurations of multiple modules within a single configu-
ration file, but this is not recommended and support for it will be removed in a future release. The only object, besides
the one specifying module configuration, which can be (and usually was) included in the same file is Logging. How-
ever, we don’t include this object in the example above for clarity; its content, the list of loggers, should now be inside
the Dhcp4 object instead of the deprecated object.

The Dhcp4 configuration starts with the "Dhcp4": { line and ends with the corresponding closing brace (in the
above example, the brace after the last comment). Everything defined between those lines is considered to be the
Dhcp4 configuration.

In general, the order in which those parameters appear does not matter, but there are two caveats. The first one is
to remember that the configuration file must be well-formed JSON. That means that the parameters for any given
scope must be separated by a comma, and there must not be a comma after the last parameter. When reordering a
configuration file, keep in mind that moving a parameter to or from the last position in a given scope may also require
moving the comma. The second caveat is that it is uncommon — although legal JSON — to repeat the same parameter
multiple times. If that happens, the last occurrence of a given parameter in a given scope is used, while all previous
instances are ignored. This is unlikely to cause any confusion as there are no real-life reasons to keep multiple copies
of the same parameter in the configuration file.

The first few DHCPv4 configuration elements define some global parameters. valid-1ifetime defines how long
the addresses (leases) given out by the server are valid. If nothing changes, a client that got an address is allowed to use
it for 4000 seconds. (Note that integer numbers are specified as is, without any quotes around them.) renew-timer
and rebind-timer are values (also in seconds) that define T1 and T2 timers that govern when the client will begin
the renewal and rebind procedures.

Note: Beginning with Kea 1.6.0 the lease valid lifetime is extended from a single value to a triplet with minimum,
default and maximum values using min-valid-lifetime, valid-lifetime and max-valid-lifetime.
When the client does not specify a lifetime the default value is used, when it specifies using a DHCP option code 51
this value is used if it is not less than the minimum (in this case the minimum is returned) or greater than the maximum
(in this case the maximum is used).

Note: Both renew-timer and rebind-timer are optional. The server will only send rebind-timer to the
client, via DHCPv4 option code 59, if it is less than valid-11ifetime; and it will only send renew—timer, via
DHCPv4 option code 58, if it is less than rebind-timer (or valid-1lifetime if rebind-timer was not
specified). In their absence, the client should select values for T1 and T2 timers according to RFC 2131. See section
Sending T1 (Option 58) and T2 (Option 59) for more details on generating T1 and T2.

The interfaces—-config map specifies the server configuration concerning the network interfaces on which the
server should listen to the DHCP messages. The interfaces parameter specifies a list of network interfaces on
which the server should listen. Lists are opened and closed with square brackets, with elements separated by commas.
To listen on two interfaces, the interfaces—config command should look like this:

"interfaces-config": {
"interfaces": ["ethO0", "ethl"]

}y

The next couple of lines define the lease database, the place where the server stores its lease information. This
particular example tells the server to use memfile, which is the simplest (and fastest) database backend. It uses

8.2. DHCPv4 Server Configuration 43

https://tools.ietf.org/html/rfc2131

Kea Administrator Reference Manual Documentation, Release 1.7.0

an in-memory database and stores leases on disk in a CSV (comma-separated values) file. This is a very simple
configuration; usually the lease database configuration is more extensive and contains additional parameters. Note that
lease-database is an object and opens up a new scope, using an opening brace. Its parameters (just one in this
example: type) follow. If there were more than one, they would be separated by commas. This scope is closed with
a closing brace. As more parameters for the Dhcp4 definition follow, a trailing comma is present.

Finally, we need to define a list of IPv4 subnets. This is the most important DHCPv4 configuration structure, as the
server uses that information to process clients’ requests. It defines all subnets from which the server is expected to
receive DHCP requests. The subnets are specified with the subnet4 parameter. It is a list, so it starts and ends
with square brackets. Each subnet definition in the list has several attributes associated with it, so it is a structure and
is opened and closed with braces. At a minimum, a subnet definition has to have at least two parameters: subnet
(which defines the whole subnet) and pools (which is a list of dynamically allocated pools that are governed by the
DHCEP server).

The example contains a single subnet. If more than one were defined, additional elements in the subnet 4 parameter
would be specified and separated by commas. For example, to define three subnets, the following syntax would be
used:

"subnetd4": [

{
"pools": [{ "pool": "192.0.2.1 - 192.0.2.200" } 1,
"subnet": "192.0.2.0/24"

}I

{
"pools": [{ "pool": "192.0.3.100 - 192.0.3.200" } 1,
"subnet": "192.0.3.0/24"

}I

{
"pools": [{ "pool": "192.0.4.1 - 192.0.4.254" } 1,
"subnet": "192.0.4.0/24"

Note that indentation is optional and is used for aesthetic purposes only. In some cases it may be preferable to use
more compact notation.

After all the parameters have been specified, we have two contexts open: global and Dhcp4; thus, we need two closing
curly brackets to close them.

8.2.2 Lease Storage

All leases issued by the server are stored in the lease database. Currently there are four database backends available:
memlfile (which is the default backend), MySQL, PostgreSQL, and Cassandra.

Memfile - Basic Storage for Leases

The server is able to store lease data in different repositories. Larger deployments may elect to store leases in a
database. Lease Database Configuration describes this option. In typical smaller deployments, though, the server will
store lease information in a CSV file rather than a database. As well as requiring less administration, an advantage of
using a file for storage is that it eliminates a dependency on third-party database software.

The configuration of the file backend (memfile) is controlled through the Dhcp4/lease-database parameters. The type
parameter is mandatory and it specifies which storage for leases the server should use. The value of "memfile"
indicates that the file should be used as the storage. The following list gives additional optional parameters that can be
used to configure the memfile backend.

44 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 1.7.0

* persist: controls whether the new leases and updates to existing leases are written to the file. It is strongly
recommended that the value of this parameter be set to t rue at all times during the server’s normal operation.
Not writing leases to disk means that if a server is restarted (e.g. after a power failure), it will not know which
addresses have been assigned. As a result, it may assign new clients addresses that are already in use. The value
of false is mostly useful for performance-testing purposes. The default value of the persist parameter is
true, which enables writing lease updates to the lease file.

* name: specifies an absolute location of the lease file in which new leases and lease updates will be recorded.
The default value for this parameter is " [kea-install-dir]/var/lib/kea/kea-leases4.csv".

e 1fc-interval: specifies the interval, in seconds, at which the server will perform a lease file cleanup (LFC).
This removes redundant (historical) information from the lease file and effectively reduces the lease file size.
The cleanup process is described in more detail later in this section. The default value of the 1fc-interval
is 3600. A value of O disables the LFC.

* max-row-errors: when the server loads a lease file, it is processed row by row, each row contaning a single
lease. If a row is flawed and cannot be processed correctly the server will log it, discard the row, and go on
to the next row. This parameter can be used to set a limit on the number of such discards that may occur after
which the server will abandon the effort and exit. The default value of O disables the limit and allows the server
to process the entire file, regardless of how many rows are discarded.

"Dhcpéd": {
"lease—database": {
"type": "memfile",
"persist": true,
"name": "/tmp/kea-leasesd.csv",
"lfc-interval": 1800,
"max-row—errors": 100

This configuration selects the /tmp/kea-leases4.csv as the storage for lease information and enables persis-
tence (writing lease updates to this file). It also configures the backend to perform a periodic cleanup of the lease file
every 30 minutes and sets the maximum number of row errors to 100.

It is important to know how the lease file contents are organized to understand why the periodic lease file cleanup is
needed. Every time the server updates a lease or creates a new lease for the client, the new lease information must be
recorded in the lease file. For performance reasons, the server does not update the existing client’s lease in the file,
as this would potentially require rewriting the entire file. Instead, it simply appends the new lease information to the
end of the file; the previous lease entries for the client are not removed. When the server loads leases from the lease
file, e.g. at the server startup, it assumes that the latest lease entry for the client is the valid one. The previous entries
are discarded, meaning that the server can re-construct the accurate information about the leases even though there
may be many lease entries for each client. However, storing many entries for each client results in a bloated lease file
and impairs the performance of the server’s startup and reconfiguration, as it needs to process a larger number of lease
entries.

Lease file cleanup (LFC) removes all previous entries for each client and leaves only the latest ones. The interval at
which the cleanup is performed is configurable, and it should be selected according to the frequency of lease renewals
initiated by the clients. The more frequent the renewals, the smaller the value of 1 fc—interval should be. Note,
however, that the LFC takes time and thus it is possible (although unlikely) that, if the 1 fc—interval is too short, a
new cleanup may be started while the previous one is still running. The server would recover from this by skipping the
new cleanup when it detected that the previous cleanup was still in progress. But it implies that the actual cleanups will
be triggered more rarely than configured. Moreover, triggering a new cleanup adds overhead to the server, which will
not be able to respond to new requests for a short period of time when the new cleanup process is spawned. Therefore,
it is recommended that the 1 fc—interval value be selected in a way that allows the LFC to complete the cleanup
before a new cleanup is triggered.

Lease file cleanup is performed by a separate process (in the background) to avoid a performance impact on the server

8.2. DHCPv4 Server Configuration 45

Kea Administrator Reference Manual Documentation, Release 1.7.0

process. To avoid conflicts between two processes both using the same lease files, the LFC process starts with Kea
opening a new lease file; the actual LFC process operates on the lease file that is no longer used by the server. There
are also other files created as a side effect of the lease file cleanup. The detailed description of the LFC process is
located later in this Kea Administrator’s Reference Manual: The LFC Process.

Lease Database Configuration

Note: Lease database access information must be configured for the DHCPv4 server, even if it has already been
configured for the DHCPv6 server. The servers store their information independently, so each server can use a separate
database or both servers can use the same database.

Lease database configuration is controlled through the Dhcp4/lease-database parameters. The database type must be

LEINT3

set to “memfile”, “mysql”, “postgresql”, or “cql”, e.g.:

"Dhcpd": { "lease-database": { "type": "mysql", ... }, ... }

Next, the name of the database to hold the leases must be set; this is the name used when the database was created (see
First-Time Creation of the MySQL Database, First-Time Creation of the PostgreSQL Database, or First-Time Creation
of the Cassandra Database).

’"Dhcp4": { "lease—-database": { "name": "database-name" , ... }, ... } ‘

For Cassandra:

’"Dhcp4": { "lease—-database": { "keyspace": "database-name" , ... }, ... } ‘

If the database is located on a different system from the DHCPv4 server, the database host name must also be specified:

"Dhcpd": { "lease-database": { "host": "remote-host-name", ... }, ... } ‘

(It should be noted that this configuration may have a severe impact on server performance.)

Normally, the database will be on the same machine as the DHCPv4 server. In this case, set the value to the empty
string:

"Dhcpd": { "lease-database": { "host"™ : "", ... }, ... } ‘

Should the database use a port other than the default, it may be specified as well:

"Dhcpd": { "lease-database": { "port" : 12345, ... }, ... } ‘

Should the database be located on a different system, the administrator may need to specify a longer interval for the
connection timeout:

"’Dhcpll": { "lease-database": { "connect-timeout" : timeout-in-seconds, ... }, ... } ‘

The default value of five seconds should be more than adequate for local connections. If a timeout is given, though, it
should be an integer greater than zero.

The maximum number of times the server will automatically attempt to reconnect to the lease database after connec-
tivity has been lost may be specified:

"Dhcpd": { "lease-database": { "max-reconnect-tries" : number-of-tries, ... }, ... }

46 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 1.7.0

If the server is unable to reconnect to the database after making the maximum number of attempts, the server will exit.
A value of zero (the default) disables automatic recovery and the server will exit immediately upon detecting a loss
of connectivity (MySQL and PostgreSQL only). For Cassandra, Kea uses an interface that connects to all nodes in a
cluster at the same time. Any connectivity issues should be handled by internal Cassandra mechanisms.

The number of milliseconds the server will wait between attempts to reconnect to the lease database after connectivity
has been lost may also be specified:

"Dhcp4d": { "lease-database": { "reconnect-wait-time" : number-of-milliseconds, ... },_,

The default value for MySQL and PostgreSQL is 0, which disables automatic recovery and causes the server to exit
immediately upon detecting the loss of connectivity. The default value for Cassandra is 2000 ms.

Note: Automatic reconnection to database backends is configured individually per backend. This allows users to
tailor the recovery parameters to each backend they use. We do suggest that users enable it either for all backends or
none, so behavior is consistent. Losing connectivity to a backend for which reconnect is disabled will result in the
server shutting itself down. This includes cases when the lease database backend and the hosts database backend are
connected to the same database instance.

Note: Note that the host parameter is used by the MySQL and PostgreSQL backends. Cassandra has a concept of
contact points that can be used to contact the cluster, instead of a single IP or hostname. It takes a list of comma-
separated IP addresses, which may be specified as:

"Dhcpd": { "lease-database": { "contact-points" : "192.0.2.1,192.0.2.2", ... }, ...}

Finally, the credentials of the account under which the server will access the database should be set:

"Dhcp4d": { "lease—-database": { "user": "user—-name",
"password": "password",

|

If there is no password to the account, set the password to the empty string “”. (This is also the default.)

Cassandra-Specific Parameters

The Cassandra backend is configured slightly differently. Cassandra has a concept of contact points that can be used
to contact the cluster, instead of a single IP or hostname. It takes a list of comma-separated IP addresses, which may
be specified as:

"Dhcpd": {
"lease-database": {
"type": "cqgl",
"contact-points": "ip-addressl, ip-address2 [,...]",

by

Cassandra also supports a number of optional parameters:

* reconnect-wait-time - governs how long Kea waits before attempting to reconnect. Expressed in mil-
liseconds. The default is 2000 [ms].

8.2. DHCPv4 Server Configuration 47

Kea Administrator Reference Manual Documentation, Release 1.7.0

e connect-timeout - sets the timeout for connecting to a node. Expressed in milliseconds. The default is
5000 [ms].

* request-timeout - sets the timeout for waiting for a response from a node. Expressed in milliseconds. The
default is 12000 [ms].

* tcp-keepalive - governs the TCP keep-alive mechanism. Expressed in seconds of delay. If the parameter
is not present, the mechanism is disabled.

* tcp-nodelay - enables/disables Nagle’s algorithm on connections. The default is true.

e consistency - configures consistency level. The default is “quorum”. Supported values: any, one, two,
three, quorum, all, local-quorum, each-quorum, serial, local-serial, local-one. See Cassandra consistency for
more details.

* serial-consistency - configures serial consistency level which manages lightweight transaction isola-
tion. The default is “serial”. Supported values: any, one, two, three, quorum, all, local-quorum, each-quorum,
serial, local-serial, local-one. See Cassandra serial consistency for more details.

For example, a complex Cassandra configuration with most parameters specified could look as follows:

"Dhcpd": {
"lease—-database": {

"type": "cqgl",
"keyspace": "keatest",
"contact-points": "192.0.2.1, 192.0.2.2, 192.0.2.3",
"port": 9042,
"reconnect-wait-time": 2000,
"connect-timeout": 5000,

"request-timeout": 12000,
"tcp-keepalive": 1,
"tcp-nodelay": true

},

Similar parameters can be specified for the hosts database.

8.2.3 Hosts Storage

Kea is also able to store information about host reservations in the database. The hosts database configuration uses the
same syntax as the lease database. In fact, a Kea server opens independent connections for each purpose, be it lease or
hosts information. This arrangement gives the most flexibility. Kea can keep leases and host reservations separately,
but can also point to the same database. Currently the supported hosts database types are MySQL, PostgreSQL, and
Cassandra.

Please note that usage of hosts storage is optional. A user can define all host reservations in the configuration file, and
that is the recommended way if the number of reservations is small. However, when the number of reservations grows,
it is more convenient to use host storage. Please note that both storage methods (configuration file and one of the
supported databases) can be used together. If hosts are defined in both places, the definitions from the configuration
file are checked first and external storage is checked later, if necessary.

In fact, host information can be placed in multiple stores. Operations are performed on the stores in the order they
are defined in the configuration file, although this leads to a restriction in ordering in the case of a host reservation
addition; read-only stores must be configured after a (required) read-write store, or the addition will fail.

48 Chapter 8. The DHCPv4 Server

https://docs.datastax.com/en/cassandra/3.0/cassandra/dml/dmlConfigConsistency.html
https://docs.datastax.com/en/cassandra/3.0/cassandra/dml/dmlConfigSerialConsistency.html

Kea Administrator Reference Manual Documentation, Release 1.7.0

DHCPv4 Hosts Database Configuration

Hosts database configuration is controlled through the Dhcp4/hosts-database parameters. If enabled, the type of
database must be set to “mysql” or “postgresql”.

’"Dhcp4": { "hosts-database": { "type": "mysqgl", ... }, ... }

Next, the name of the database to hold the reservations must be set; this is the name used when the lease database was
created (see Supported Backends for instructions on how to set up the desired database type):

’"Dhcp4": { "hosts—-database": { "name": "database-name" , ... }, ... }

If the database is located on a different system than the DHCPv4 server, the database host name must also be specified:

"Dhcpd": { "hosts-database": { "host": remote-host-name, ... }, ... }

|

(Again, it should be noted that this configuration may have a severe impact on server performance.)

Normally, the database will be on the same machine as the DHCPv4 server. In this case, set the value to the empty
string:

"Dhcp4d4": { "hosts-database": { "host"™ : "", ... }, ... }

Should the database use a port different than the default, it may be specified as well:

’"Dhcp4": { "hosts—-database": { "port" : 12345, ... }, ... }

The maximum number of times the server will automatically attempt to reconnect to the host database after connec-
tivity has been lost may be specified:

’"Dhcp4": { "hosts-database": { "max-reconnect-tries" : number-of-tries, ... }, ... }

If the server is unable to reconnect to the database after making the maximum number of attempts, the server will exit.
A value of zero (the default) disables automatic recovery and the server will exit immediately upon detecting a loss of
connectivity (MySQL and PostgreSQL only).

The number of milliseconds the server will wait between attempts to reconnect to the host database after connectivity
has been lost may also be specified:

"Dhcp4d": { "hosts-database": { "reconnect-wait-time" : number-of-milliseconds, ... },_,

e}

The default value for MySQL and PostgreSQL is 0, which disables automatic recovery and causes the server to exit
immediately upon detecting the loss of connectivity. The default value for Cassandra is 2000 ms.

Note: Automatic reconnection to database backends is configured individually per backend. This allows users to
tailor the recovery parameters to each backend they use. We do suggest that users enable it either for all backends or
none, so behavior is consistent. Losing connectivity to a backend for which reconnect is disabled will result in the
server shutting itself down. This includes cases when the lease database backend and the hosts database backend are
connected to the same database instance.

Finally, the credentials of the account under which the server will access the database should be set:

"Dhcp4d": { "hosts-database": { "user": "user-name",
"password": "password",

by

8.2. DHCPv4 Server Configuration 49

Kea Administrator Reference Manual Documentation, Release 1.7.0

If there is no password to the account, set the password to the empty string . (This is also the default.)

The multiple storage extension uses a similar syntax; a configuration is placed into a “hosts-databases” list instead of
into a “hosts-database” entry, as in:

"Dhcp4d": { "hosts-databases": [{ "type": "mysqgl", ... }, ... 1, ... }

For additional Cassandra-specific parameters, see Cassandra-Specific Parameters.

Using Read-Only Databases for Host Reservations with DHCPv4

In some deployments the database user whose name is specified in the database backend configuration may not have
write privileges to the database. This is often required by the policy within a given network to secure the data from
being unintentionally modified. In many cases administrators have deployed inventory databases, which contain sub-
stantially more information about the hosts than just the static reservations assigned to them. The inventory database
can be used to create a view of a Kea hosts database and such a view is often read-only.

Kea host database backends operate with an implicit configuration to both read from and write to the database. If the
database user does not have write access to the host database, the backend will fail to start and the server will refuse to
start (or reconfigure). However, if access to a read-only host database is required for retrieving reservations for clients
and/or assigning specific addresses and options, it is possible to explicitly configure Kea to start in “read-only” mode.
This is controlled by the readonly boolean parameter as follows:

"Dhcp4d": { "hosts-database": { "readonly": true, ... }, ... }

Setting this parameter to false configures the database backend to operate in “read-write” mode, which is also the
default configuration if the parameter is not specified.

Note: The readonly parameter is currently only supported for MySQL and PostgreSQL databases.

8.2.4 Interface Configuration

The DHCPv4 server must be configured to listen on specific network interfaces. The simplest network interface
configuration tells the server to listen on all available interfaces:

"Dhcpéd": {
"interfaces-config": {
"interfaces": ["&"]

}

by

The asterisk plays the role of a wildcard and means “listen on all interfaces.” However, it is usually a good idea to
explicitly specify interface names:

"Dhcpéd": {
"interfaces-config": {
"interfaces": ["ethl", "eth3"]

by

50 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 1.7.0

It is possible to use a wildcard interface name (asterisk) concurrently with explicit interface names:

"Dhcpd": {
"interfaces-config": {
"interfaces": ["ethl", "eth3", "x"]

by

It is anticipated that this form of usage will only be used when it is desired to temporarily override a list of interface
names and listen on all interfaces.

Some deployments of DHCP servers require that the servers listen on interfaces with multiple IPv4 addresses config-
ured. In these situations, the address to use can be selected by appending an IPv4 address to the interface name in the
following manner:

"Dhcpd": {
"interfaces-config": {
"interfaces": ["ethl1/10.0.0.1", "eth3/192.0.2.3" 1]

by

Should the server be required to listen on multiple IPv4 addresses assigned to the same interface, multiple addresses
can be specified for an interface as in the example below:

"Dhcpd": {
"interfaces-config": {
"interfaces": ["ethl1/10.0.0.1", "ethl1/10.0.0.2"]

}y

Alternatively, if the server should listen on all addresses for the particular interface, an interface name without any
address should be specified.

Kea supports responding to directly connected clients which don’t have an address configured. This requires the
server to inject the hardware address of the destination into the data link layer of the packet being sent to the client.
The DHCPv4 server uses raw sockets to achieve this, and builds the entire IP/UDP stack for the outgoing packets. The
downside of raw socket use, however, is that incoming and outgoing packets bypass the firewalls (e.g. iptables).

Handling traffic on multiple [Pv4 addresses assigned to the same interface can be a challenge, as raw sockets are bound
to the interface. When the DHCP server is configured to use the raw socket on an interface to receive DHCP traffic,
advanced packet filtering techniques (e.g. the BPF) must be used to receive unicast traffic on the desired addresses
assigned to the interface. Whether clients use the raw socket or the UDP socket depends on whether they are directly
connected (raw socket) or relayed (either raw or UDP socket).

Therefore, in deployments where the server does not need to provision the directly connected clients and only receives
the unicast packets from the relay agents, the DHCP server should be configured to use UDP sockets instead of raw
sockets. The following configuration demonstrates how this can be achieved:

"Dhcpd": {
"interfaces-config": {
"interfaces": ["ethl", "eth3"],
"dhcp-socket—-type": "udp"

by

8.2. DHCPv4 Server Configuration 51

Kea Administrator Reference Manual Documentation, Release 1.7.0

The dhcp-socket—-type specifies that the IP/UDP sockets will be opened on all interfaces on which the server
listens, i.e. “eth1” and “eth3” in our case. If dhcp—socket-type is set to raw, it configures the server to use raw
sockets instead. If the dhcp-socket—type value is not specified, the default value raw is used.

Using UDP sockets automatically disables the reception of broadcast packets from directly connected clients. This
effectively means that UDP sockets can be used for relayed traffic only. When using raw sockets, both the traffic from
the directly connected clients and the relayed traffic are handled. Caution should be taken when configuring the server
to open multiple raw sockets on the interface with several IPv4 addresses assigned. If the directly connected client
sends the message to the broadcast address, all sockets on this link will receive this message and multiple responses
will be sent to the client. Therefore, the configuration with multiple IPv4 addresses assigned to the interface should
not be used when the directly connected clients are operating on that link. To use a single address on such interface,
the “interface-name/address” notation should be used.

Note: Specifying the value raw as the socket type doesn’t guarantee that the raw sockets will be used! The use of
raw sockets to handle the traffic from the directly connected clients is currently supported on Linux and BSD systems
only. If the raw sockets are not supported on the particular OS in use, the server will issue a warning and fall back to
using IP/UDP sockets.

In a typical environment, the DHCP server is expected to send back a response on the same network interface on which
the query was received. This is the default behavior. However, in some deployments it is desired that the outbound
(response) packets will be sent as regular traffic and the outbound interface will be determined by the routing tables.
This kind of asymmetric traffic is uncommon, but valid. Kea supports a parameter called outbound-interface
that controls this behavior. It supports two values; the first one, same—as—inbound, tells Kea to send back the
response on the same interface where the query packet was received. This is the default behavior. The second one,
use-routing, tells Kea to send regular UDP packets and let the kernel’s routing table determine the most appro-
priate interface. This only works when dhcp-socket-type is set to udp. An example configuration looks as
follows:

"Dhcpd": {
"interfaces-config": {
"interfaces": ["ethl", "eth3"],
"dhcp-socket-type": "udp",
"outbound-interface": "use-routing"”

by

Interfaces are re-detected at each reconfiguration. This behavior can be disabled by setting the re-detect value to
false, for instance:

"Dhcpd": {
"interfaces-config": {
"interfaces": ["ethl", "eth3"],
"re-detect": false

}I

Note that interfaces are not re-detected during config-test.

Usually loopback interfaces (e.g. the “lo” or “lo0” interface) may not be configured, but if a loopback interface is
explicitely configured and IP/UDP sockets are specified, the loopback interface is accepted.

For example, it can be used to run Kea in a FreeBSD jail having only a loopback interface, to service a relayed DHCP
request:

52 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 1.7.0

"Dhcpéd": {
"interfaces-config": {
"interfaces": ["1loO" 1,
"dhcp-socket-type": "udp"

by

8.2.5 Issues with Unicast Responses to DHCPINFORM

The use of UDP sockets has certain benefits in deployments where the server receives only relayed traffic; these bene-
fits are mentioned in /nterface Configuration. From the administrator’s perspective it is often desirable to configure the
system’s firewall to filter out unwanted traffic, and the use of UDP sockets facilitates this. However, the administrator
must also be aware of the implications related to filtering certain types of traffic, as it may impair the DHCP server’s
operation.

In this section we are focusing on the case when the server receives the DHCPINFORM message from the client via a
relay. According to RFC 2131, the server should unicast the DHCPACK response to the address carried in the “ciaddr”
field. When the UDP socket is in use, the DHCP server relies on the low-level functions of an operating system to build
the data link, IP, and UDP layers of the outgoing message. Typically, the OS will first use ARP to obtain the client’s
link-layer address to be inserted into the frame’s header, if the address is not cached from a previous transaction that
the client had with the server. When the ARP exchange is successful, the DHCP message can be unicast to the client,
using the obtained address.

Some system administrators block ARP messages in their network, which causes issues for the server when it responds
to the DHCPINFORM messages because the server is unable to send the DHCPACK if the preceding ARP communi-
cation fails. Since the OS is entirely responsible for the ARP communication and then sending the DHCP packet over
the wire, the DHCP server has no means to determine that the ARP exchange failed and the DHCP response message
was dropped. Thus, the server does not log any error messages when the outgoing DHCP response is dropped. At the
same time, all hooks pertaining to the packet-sending operation will be called, even though the message never reaches
its destination.

Note that the issue described in this section is not observed when the raw sockets are in use, because, in this case, the
DHCP server builds all the layers of the outgoing message on its own and does not use ARP. Instead, it inserts the
value carried in the “chaddr” field of the DHCPINFORM message into the link layer.

Server administrators willing to support DHCPINFORM messages via relays should not block ARP traffic in their
networks or should use raw sockets instead of UDP sockets.

8.2.6 IPv4 Subnet Identifier

The subnet identifier is a unique number associated with a particular subnet. In principle, it is used to associate clients’
leases with their respective subnets. When a subnet identifier is not specified for a subnet being configured, it will be
automatically assigned by the configuration mechanism. The identifiers are assigned from 1 and are monotonically
increased for each subsequent subnet: 1,2, 3 ...

If there are multiple subnets configured with auto-generated identifiers and one of them is removed, the subnet iden-
tifiers may be renumbered. For example: if there are four subnets and the third is removed, the last subnet will be
assigned the identifier that the third subnet had before removal. As a result, the leases stored in the lease database for
subnet 3 are now associated with subnet 4, something that may have unexpected consequences. The only remedy for
this issue at present is to manually specify a unique identifier for each subnet.

Note: Subnet IDs must be greater than zero and less than 4294967295.

8.2. DHCPv4 Server Configuration 53

https://tools.ietf.org/html/rfc2131

Kea Administrator Reference Manual Documentation, Release 1.7.0

The following configuration will assign the specified subnet identifier to a newly configured subnet:

"Dhcpéd": {
"subnet4": [
{
"subnet": "192.0.2.0/24",
"id": 1024,

}

This identifier will not change for this subnet unless the “id” parameter is removed or set to 0. The value of 0 forces
auto-generation of the subnet identifier.

8.2.7 IPv4 Subnet Prefix

The subnet prefix is the second way to identify a subnet. It does not need to have the address part to match the prefix
length, for instance this configuration is accepted:

"Dhcpd": {
"subnet4": [
{
"subnet": "192.0.2.1/24",

}

Even there is another subnet with the “192.0.2.0/24” prefix: only the textual form of subnets are compared to avoid
duplicates.

Note: Abuse of this feature can lead to incorrect subnet selection (see How the DHCPv4 Server Selects a Subnet for
the Client).

8.2.8 Configuration of IPv4 Address Pools

The main role of a DHCPv4 server is address assignment. For this, the server must be configured with at least one
subnet and one pool of dynamic addresses to be managed. For example, assume that the server is connected to a
network segment that uses the 192.0.2.0/24 prefix. The administrator of that network decides that addresses from
range 192.0.2.10 to 192.0.2.20 are going to be managed by the Dhcp4 server. Such a configuration can be achieved in
the following way:

"Dhcpd": {
"subnet4": [
{
"subnet": "192.0.2.0/24",
"pools": [
{ "pool": "192.0.2.10 - 192.0.2.20" }

I

54 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 1.7.0

Note that subnet is defined as a simple string, but the pools parameter is actually a list of pools; for this reason,
the pool definition is enclosed in square brackets, even though only one range of addresses is specified.

Each pool is a structure that contains the parameters that describe a single pool. Currently there is only one parameter,
pool, which gives the range of addresses in the pool.

It is possible to define more than one pool in a subnet; continuing the previous example, further assume that
192.0.2.64/26 should be also be managed by the server. It could be written as 192.0.2.64 to 192.0.2.127. Alterna-
tively, it can be expressed more simply as 192.0.2.64/26. Both formats are supported by Dhcp4 and can be mixed in
the pool list. For example, one could define the following pools:

"Dhcpd": {
"subnet4d": [
{
"subnet": "192.0.2.0/24",
"pools": [
{ "pool": "192.0.2.10-192.0.2.20" 1},
{ "pool": "192.0.2.64/26" }

I

White space in pool definitions is ignored, so spaces before and after the hyphen are optional. They can be used to
improve readability.

The number of pools is not limited, but for performance reasons it is recommended to use as few as possible.

The server may be configured to serve more than one subnet:

"Dhcpéd": {
"subnet4": [
{
"subnet": "192.0.2.0/24",
"pools": [{ "pool": "192.0.2.1 - 192.0.2.200" } 1,
}I
{
"subnet": "192.0.3.0/24",
"pools": [{ "pool": "192.0.3.100 - 192.0.3.200" } 1,
}I
{
"subnet": "192.0.4.0/24",
"pools": [{ "pool": "192.0.4.1 - 192.0.4.254" } 1,

When configuring a DHCPv4 server using prefix/length notation, please pay attention to the boundary values. When
specifying that the server can use a given pool, it will also be able to allocate the first (typically a network address) and
the last (typically a broadcast address) address from that pool. In the aforementioned example of pool 192.0.3.0/24,
both the 192.0.3.0 and 192.0.3.255 addresses may be assigned as well. This may be invalid in some network configu-
rations. To avoid this, use the “min-max” notation.

8.2. DHCPv4 Server Configuration 55

Kea Administrator Reference Manual Documentation, Release 1.7.0

8.2.9 Sending T1 (Option 58) and T2 (Option 59)

According to RFC 2131, servers should send values for T1 and T2 that are 50% and 87.5% of the lease lifetime,
respectively. By default, kea-dhcp4 does not send either value. It can be configured to send values that are specified
explicitly or that are calculated as percentages of the lease time. The server’s behavior is governed by a combination of
configuration parameters, two of which have already been mentioned. To send specific, fixed values use the following
two parameters:

* renew-timer - specifies the value of T1 in seconds.
e rebind-timer - specifies the value of T2 in seconds.

The server will only send T2 if it is less than the valid lease time. T1 will only be sent if: T2 is being sent and T1 is
less than T2; or T2 is not being sent and T1 is less than the valid lease time.

Calculating the values is controlled by the following three parameters.

* calculate-tee-times - when true, T1 and T2 will be calculated as percentages of the valid lease time. It
defaults to false.

* t1-percent - the percentage of the valid lease time to use for T1. It is expressed as a real number between
0.0 and 1.0 and must be less than t2-percent. The default value is 0.50 per RFC 2131.

* t2-percent - the percentage of the valid lease time to use for T2. It is expressed as a real number between
0.0 and 1.0 and must be greater than t1-percent. The default value is .875 per RFC 2131.

Note: In the event that both explicit values are specified and calculate-tee-times is true, the server will use the explicit
values. Administrators with a setup where some subnets or share-networks will use explicit values and some will use
calculated values must not define the explicit values at any level higher than where they will be used. Inheriting them
from too high a scope, such as global, will cause them to have values at every level underneath (shared-networks and
subnets), effectively disabling calculated values.

8.2.10 Standard DHCPv4 Options

One of the major features of the DHCPv4 server is the ability to provide configuration options to clients. Most of
the options are sent by the server only if the client explicitly requests them using the Parameter Request List option.
Those that do not require inclusion in the Parameter Request List option are commonly used options, e.g. “Domain
Server”, and options which require special behavior, e.g. “Client FQDN”, which is returned to the client if the client
has included this option in its message to the server.

List of Standard DHCPv4 Options comprises the list of the standard DHCPv4 options whose values can be configured
using the configuration structures described in this section. This table excludes the options which require special
processing and thus cannot be configured with fixed values. The last column of the table indicates which options can
be sent by the server even when they are not requested in the Parameter Request List option, and those which are sent
only when explicitly requested.

The following example shows how to configure the addresses of DNS servers, which is one of the most frequently
used options. Options specified in this way are considered global and apply to all configured subnets.

"Dhcpéd": {
"option-data": [

{

"name": "domain-name-servers",
"code": 6,

"space": "dhcp4",
"csv-format": true,

"data": "192.0.2.1, 192.0.2.2"

56 Chapter 8. The DHCPv4 Server

https://tools.ietf.org/html/rfc2131

Kea Administrator Reference Manual Documentation, Release 1.7.0

Note that only one of name or code is required; there is no need to specify both. Space has a default value of “dhcp4”,
so this can be skipped as well if a regular (not encapsulated) DHCPv4 option is defined. Finally, csv-format defaults
to true, so it too can be skipped, unless the option value is specified as a hexadecimal string. Therefore, the above

example can be simplified to:

"Dhcpd": {
"option-data": [
{
"name": "domain-name-servers",
"data": "192.0.2.1, 192.0.2.2"

by

Defined options are added to the response when the client requests them at a few exceptions, which are always added.
To enforce the addition of a particular option, set the always-send flag to true as in:

"Dhcpd": {
"option—-data": [

{

"name": "domain-name-servers",
"data": "192.0.2.1, 192.0.2.2",
"always—-send": true

}l

The effect is the same as if the client added the option code in the Parameter Request List option (or its equivalent for

vendor options):

"Dhcpéd": {
"option-data": [
{
"name": "domain-name-servers",
"data": "192.0.2.1, 192.0.2.2",
"always—-send": true

by

I

"subnet4": [

{
"subnet": "192.0.3.0/24",

"option-data": [

{

"name": "domain-name-servers",
"data": "192.0.3.1, 192.0.3.2"

by

8.2. DHCPv4 Server Configuration 57

Kea Administrator Reference Manual Documentation, Release 1.7.0

The Domain Name Servers option is always added to responses (the always-send is “sticky”), but the value is the
subnet one when the client is localized in the subnet.

The name parameter specifies the option name. For a list of currently supported names, see List of Standard DHCPv4
Options below. The code parameter specifies the option code, which must match one of the values from that list. The
next line specifies the option space, which must always be set to “dhcp4” as these are standard DHCPv4 options. For
other option spaces, including custom option spaces, see Nested DHCPv4 Options (Custom Option Spaces). The next
line specifies the format in which the data will be entered; use of CSV (comma-separated values) is recommended.
The sixth line gives the actual value to be sent to clients. The data parameter is specified as normal text, with values
separated by commas if more than one value is allowed.

Options can also be configured as hexadecimal values. If csv—-format is set to false, option data must be specified
as a hexadecimal string. The following commands configure the domain-name-servers option for all subnets with the
following addresses: 192.0.3.1 and 192.0.3.2. Note that csv—-format is set to false.

"Dhcpd": {
"option-data": [

{

"name": "domain-name-servers",
"code": 6,

"space": "dhcp4d",

"csv-format": false,

"data": "CO 00 03 01 CcO 00 03 02"

1,

Kea supports the following formats when specifying hexadecimal data:

* Delimited octets - one or more octets separated by either colons or spaces (:> or ‘). While each octet
may contain one or two digits, we strongly recommend always using two digits. Valid examples are “ab:cd:ef”
and “ab cd ef™.

* String of digits - a continuous string of hexadecimal digits with or without a “Ox” prefix. Valid exam-
ples are “Oxabcdef” and “abcdef™.

Care should be taken to use proper encoding when using hexadecimal format; Kea’s ability to validate data correctness
in hexadecimal is limited.

As of Kea 1.6.0, it is also possible to specify data for binary options as a single-quoted text string within double quotes
as shown (note that csv—format must be set to false):

"Dhcpd": {
"option-data": [

{

"name": "user-class",

"code": 77,

"space": "dhcp4d",

"csv-format": false,

"data": "'convert this text to binary'"

58 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 1.7.0

1r

Most of the parameters in the “option-data” structure are optional and can be omitted in some circumstances, as
discussed in Unspecified Parameters for DHCPv4 Option Configuration.

It is possible to specify or override options on a per-subnet basis. If clients connected to most subnets are expected
to get the same values of a given option, administrators should use global options; it is possible to override specific
values for a small number of subnets. On the other hand, if different values are used in each subnet, it does not make
sense to specify global option values; rather, only subnet-specific ones should be set.

The following commands override the global DNS servers option for a particular subnet, setting a single DNS server
with address 192.0.2.3:

"Dhcpd": {
"subnetd4": [
{
"option-data": [

{

"name": "domain-name-servers",
"code": 6,

"space": "dhcp4",
"csv-format": true,

"data": "192.0.2.3"

1,

In some cases it is useful to associate some options with an address pool from which a client is assigned a lease.
Pool-specific option values override subnet-specific and global option values. The server’s administrator must not try
to prioritize assignment of pool-specific options by trying to order pool declarations in the server configuration.

The following configuration snippet demonstrates how to specify the DNS servers option, which will be assigned to a
client only if the client obtains an address from the given pool:

"Dhcpd": {
"subnet4": [
{
"pools": [
{
"pool": "192.0.2.1 - 192.0.2.200",
"option-data": [
{
"name": "domain-name-servers",
"data": "192.0.2.3"

8.2. DHCPv4 Server Configuration 59

Kea Administrator Reference Manual Documentation, Release 1.7.0

Options can also be specified in class or host reservation scope. The current Kea options precedence order is (from
most important): host reservation, pool, subnet, shared network, class, global.

The currently supported standard DHCPv4 options are listed in List of Standard DHCPv4 Options. “Name” and
“Code” are the values that should be used as a name/code in the option-data structures. “Type” designates the format
of the data; the meanings of the various types are given in List of Standard DHCP Option Types.

When a data field is a string and that string contains the comma (,; U+002C) character, the comma must be escaped
with two backslashes (; U+005C). This double escape is required because both the routine splitting CSV data into
fields and JSON use the same escape character; a single escape (,) would make the JSON invalid. For example, the
string “foo,bar” must be represented as:

"Dhcpd": {
"subnet4": [
{
"pools": [
{
"option-data": [
{
"name": "boot-file-name",
"data": "fool\\,bar"

Some options are designated as arrays, which means that more than one value is allowed in such an option. For
example, the option time-servers allows the specification of more than one IPv4 address, enabling clients to obtain the
addresses of multiple NTP servers.

Custom DHCPv4 Options describes the configuration syntax to create custom option definitions (formats). Creation
of custom definitions for standard options is generally not permitted, even if the definition being created matches
the actual option format defined in the RFCs. There is an exception to this rule for standard options for which Kea
currently does not provide a definition. In order to use such options, a server administrator must create a definition as
described in Custom DHCPv4 Options in the “dhcp4” option space. This definition should match the option format
described in the relevant RFC, but the configuration mechanism will allow any option format as it currently has no
means to validate it.

60 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 1.7.0

Table 8.1: List of Standard DHCPv4 Options

Name Code | Type Array? | Returned if not reque
time-offset 2 int32 false false
routers 3 ipv4-address true true
time-servers 4 ipv4-address true false
name-servers 5 ipv4-address true false
domain-name-servers 6 ipv4-address true true
log-servers 7 ipv4-address true false
cookie-servers 8 ipv4-address true false
lpr-servers 9 ipv4-address true false
impress-servers 10 ipv4-address true false
resource-location-servers 11 ipv4-address true false
boot-size 13 uint16 false false
merit-dump 14 string false false
domain-name 15 fqdn false true
swap-server 16 ipv4-address false false
root-path 17 string false false
extensions-path 18 string false false
ip-forwarding 19 boolean false false
non-local-source-routing 20 boolean false false
policy-filter 21 ipv4-address true false
max-dgram-reassembly 22 uint16 false false
default-ip-ttl 23 uint8 false false
path-mtu-aging-timeout 24 uint32 false false
path-mtu-plateau-table 25 uint16 true false
interface-mtu 26 uint16 false false
all-subnets-local 27 boolean false false
broadcast-address 28 ipv4-address false false
perform-mask-discovery 29 boolean false false
mask-supplier 30 boolean false false
router-discovery 31 boolean false false
router-solicitation-address 32 ipv4-address false false
static-routes 33 ipv4-address true false
trailer-encapsulation 34 boolean false false
arp-cache-timeout 35 uint32 false false
ieee802-3-encapsulation 36 boolean false false
default-tcp-ttl 37 uint8 false false
tcp-keepalive-interval 38 uint32 false false
tcp-keepalive-garbage 39 boolean false false
nis-domain 40 string false false
nis-servers 41 ipv4-address true false
ntp-servers 42 ipv4-address true false
vendor-encapsulated-options 43 empty false false
netbios-name-servers 44 ipv4-address true false
netbios-dd-server 45 ipv4-address true false
netbios-node-type 46 uint8 false false
netbios-scope 47 string false false
font-servers 48 ipv4-address true false
x-display-manager 49 ipv4-address true false
dhcp-option-overload 52 uint8 false false

Continued on next

8.2. DHCPv4 Server Configuration

61

Kea Administrator Reference Manual Documentation, Release 1.7.0

Table 8.1 — continued from previous page

Name Code | Type Array? | Returned if not reque
dhcp-server-identifier 54 ipv4-address false true
dhcp-message 56 string false false
dhcp-max-message-size 57 uint16 false false
vendor-class-identifier 60 string false false
nwip-domain-name 62 string false false
nwip-suboptions 63 binary false false
nisplus-domain-name 64 string false false
nisplus-servers 65 ipv4-address true false
tftp-server-name 66 string false false
boot-file-name 67 string false false
mobile-ip-home-agent 68 ipv4-address true false
smtp-server 69 ipv4-address true false
pop-server 70 ipv4-address true false
nntp-server 71 ipv4-address true false
WWWw-server 72 ipv4-address true false
finger-server 73 ipv4-address true false
irc-server 74 ipv4-address true false
streettalk-server 75 ipv4-address true false
streettalk-directory-assistance-server | 76 ipv4-address true false
user-class 77 binary false false
slp-directory-agent 78 record (boolean, ipv4-address) true false
slp-service-scope 79 record (boolean, string) false false
nds-server 85 ipv4-address true false
nds-tree-name 86 string false false
nds-context 87 string false false
bcems-controller-names 88 fqdn true false
bcems-controller-address 89 ipv4-address true false
client-system 93 uint16 true false
client-ndi 94 record (uint8, uint8, uint8) false false
uuid-guid 97 record (uint8, binary) false false
uap-servers 98 string false false
geoconf-civic 99 binary false false
pcode 100 string false false
tcode 101 string false false
netinfo-server-address 112 ipv4-address true false
netinfo-server-tag 113 string false false
default-url 114 string false false
auto-config 116 uint8 false false
name-service-search 117 uint16 true false
subnet-selection 118 ipv4-address false false
domain-search 119 fqdn true false
vivco-suboptions 124 binary false false
vivso-suboptions 125 binary false false
pana-agent 136 ipv4-address true false
v4-lost 137 fqdn false false
capwap-ac-v4 138 ipv4-address true false
sip-ua-cs-domains 141 fqdn true false
rdnss-selection 146 record (uint8, ipv4-address, ipv4-address, fqdn) | true false
v4-portparams 159 record (uint8, psid) false false

Continued on next

62

Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 1.7.0

Table 8.1 — continued from previous page

Name Code | Type Array? | Returned if not reque

v4-captive-portal 160 string false false

option-6rd 212 record (uint8, uint8, ipv6-address, ipv4-address) | true false

v4-access-domain 213 fqdn false false

Table 8.2: List of Standard DHCP Option Types

Name | Meaning

binary An arbitrary string of bytes, specified as a set of hexadecimal digits.

boolean | A boolean value with allowed values true or false.

empty No value; data is carried in sub-options.

fqdn Fully qualified domain name (e.g. www.example.com).

ipv4- IPv4 address in the usual dotted-decimal notation (e.g. 192.0.2.1).

address

ipv6- IPv6 address in the usual colon notation (e.g. 2001:db8::1).

address

ipv6- IPv6 prefix and prefix length specified using CIDR notation, e.g. 2001:db8:1::/64. This data type is

prefix used to represent an 8-bit field conveying a prefix length and the variable length prefix value.

psid PSID and PSID length separated by a slash, e.g. 3/4 specifies PSID=3 and PSID length=4. In the wire
format it is represented by an 8-bit field carrying PSID length (in this case equal to 4) and the
16-bits-long PSID value field (in this case equal to “0011000000000000b” using binary notation).
Allowed values for a PSID length are O to 16. See RFC 7597 for details about the PSID wire
representation.

record Structured data that may be comprised of any types (except “record” and “empty”’). The array flag
applies to the last field only.

string Any text. Please note that Kea will silently discard any terminating/trailing nulls from the end of
‘string’ options when unpacking received packets. This is in keeping with RFC 2132, Section 2.

tuple A length encoded as an 8- (16- for DHCPv6) bit unsigned integer followed by a string of this length.

uint8 8-bit unsigned integer with allowed values 0 to 255.

uintl6 16-bit unsigned integer with allowed values 0 to 65535.

uint32 32-bit unsigned integer with allowed values 0 to 4294967295.

int8 8-bit signed integer with allowed values -128 to 127.

intl6 16-bit signed integer with allowed values -32768 to 32767.

int32 32-bit signed integer with allowed values -2147483648 to 2147483647.

8.2.11 Custom DHCPv4 Options

Kea supports custom (non-standard) DHCPv4 options. Assume that we want to define a new DHCPv4 option called

“foo” which

will have code 222 and will convey a single, unsigned, 32-bit integer value. We can define such an option

by putting the following entry in the configuration file:

"Dhcpd":

{

{

"option-def": [
"name": "foo",
"code": 222,
"type": "uint32",
"array": false,
"record-types": "",
"space": "dhcp4",
"encapsulate": ""

8.2. DHCPv4 Server Configuration 63

https://tools.ietf.org/html/rfc7597
https://tools.ietf.org/html/rfc2132#section-2

Kea Administrator Reference Manual Documentation, Release 1.7.0

1r

The false value of the array parameter determines that the option does NOT comprise an array of “uint32” values
but is, instead, a single value. Two other parameters have been left blank: record-types and encapsulate.
The former specifies the comma-separated list of option data fields, if the option comprises a record of data fields. The
record-types value should be non-empty if type is set to “record”; otherwise it must be left blank. The latter
parameter specifies the name of the option space being encapsulated by the particular option. If the particular option
does not encapsulate any option space, the parameter should be left blank. Note that the opt ion—def configuration
statement only defines the format of an option and does not set its value(s).

The name, code, and type parameters are required; all others are optional. The array default value is false.
The record-types and encapsulate default values are blank (i.e. “”’). The default space is “dhcp4”.

Once the new option format is defined, its value is set in the same way as for a standard option. For example, the
following commands set a global value that applies to all subnets.

"Dhcpd": {
"option-data": [

{

"name": "foo",
"code": 222,
"space": "dhcp4d",
"csv-format": true,
"data": "12345"

1,

New options can take more complex forms than simple use of primitives (uint8, string, ipv4-address, etc.); it is possible
to define an option comprising a number of existing primitives.

For example, assume we want to define a new option that will consist of an IPv4 address, followed by an unsigned
16-bit integer, followed by a boolean value, followed by a text string. Such an option could be defined in the following
way:

"Dhcpd": {
"option-def": [
{

"name": "bar",

"code": 223,

"space": "dhcp4d",

"type": "record",

"array": false,

"record-types": "ipv4-address, uintl6, boolean, string",
"encapsulate": ""

1y

The type is set to “record” to indicate that the option contains multiple values of different types. These types are
given as a comma-separated list in the record-types field and should be ones from those listed in List of Standard
DHCP Option Types.

64 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 1.7.0

The values of the option are set in an opt ion-data statement as follows:

"Dhcpd": {
"option-data": [

{

"name": "bar",

"space": "dhcp4d",

"code": 223,

"csv-format": true,

"data": "192.0.2.100, 123, true, Hello World"

csv—-format is set to t rue to indicate that the data field comprises a comma-separated list of values. The values
in data must correspond to the types set in the record-types field of the option definition.

When array is set to true and type is set to “record”, the last field is an array, i.e. it can contain more than one
value, as in:

"Dhcpd": {
"option-def": [
{

"name": "bar",

"code": 223,

"space": "dhcp4",

"type": "record",

"array": true,

"record-types": "ipv4-address, uintlée",
"encapsulate": ""

1,

The new option content is one IPv4 address followed by one or more 16- bit unsigned integers.

Note: In general, boolean values are specified as t rue or false, without quotes. Some specific boolean parameters
may also accept "true", "false",0,1,"0",and "1".

Note: Numbers can be specified in decimal or hexadecimal format. The hexadecimal format can be either plain (e.g.
abcd) or prefixed with Ox (e.g. Oxabcd).

8.2.12 DHCPv4 Private Options

Options with a code between 224 and 254 are reserved for private use. They can be defined at the global scope or at
the client-class local scope; this allows option definitions to be used depending on context and option data to be set
accordingly. For instance, to configure an old PXEClient vendor:

"Dhcpéd": {
"client-classes": [

{

8.2. DHCPv4 Server Configuration 65

Kea Administrator Reference Manual Documentation, Release 1.7.0

"name": "pxeclient",

"test": "option[vendor-class-identifier].tex

"option—-def": [
{

"name": "configfile",
"code": 209,
"type": "string"

== 'PXEClient'",

As the Vendor-Specific Information option (code 43) has vendor-specific format, i.e. can carry either raw binary value

or sub-options, this mechanism is available for this option too.

In the following example taken from a real configuration, two vendor classes use the option 43 for different and

incompatible purposes:

"Dhcpd": {
"option-def": [
{

"name": "cookie",
"code": 1,
"type": "string",
"space": "APC"

}V

{
"name": "mtftp-ip",
"code": 1,
"type": "ipv4-address",
"space": "PXE"

by

1,
"client-classes": [

{

"name": "APC",

"test": " (option[vendor-class—-identifier].text == 'APC'",

"option-def": [
{

"name": "vendor-encapsulated-options",
lltypell . "emptyll,
"encapsulate": "APC"

I
"option-data": [

{

"name": "cookie",
"space": "APC",
"data": "1APC"
}I
{
"name": "vendor-encapsulated-options"

by

66

Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 1.7.0

"name": "PXE",
"test": " (option[vendor-class—-identifier].text == 'PXE'",
"option-def": [

{

"name": "vendor-encapsulated-options",
thpe" . "emptyH,
"encapsulate": "PXE"

}
1,
"option-data": [

{

"name": "mtftp-ip",
"space": "PXE",
"data": "0.0.0.0"
}I
{
"name": "vendor-encapsulated-options"

by

1,

}

The definition used to decode a VSI option is:
1. The local definition of a client class the incoming packet belongs to;
2. If none, the global definition;

3. If none, the last-resort definition described in the next section, DHCPv4 Vendor-Specific Options (backward-
compatible with previous Kea versions).

Note: This last-resort definition for the Vendor-Specific Information option (code 43) is not compatible with a raw
binary value. When there are known cases where a raw binary value will be used, a client class must be defined with
both a classification expression matching these cases and an option definition for the VSI option with a binary type
and no encapsulation.

Note: Option definitions in client classes are allowed only for this limited option set (codes 43 and from 224 to 254),
and only for DHCPv4.

8.2.13 DHCPv4 Vendor-Specific Options

Currently there are two option spaces defined for the DHCPv4 daemon: “dhcp4” (for the top-level DHCPv4 options)
and “vendor-encapsulated-options-space”, which is empty by default but in which options can be defined. Those
options are carried in the Vendor-Specific Information option (code 43). The following examples show how to define

8.2. DHCPv4 Server Configuration 67

Kea Administrator Reference Manual Documentation, Release 1.7.0

an option “foo” with code 1 that comprises an IPv4 address, an unsigned 16-bit integer, and a string. The “foo” option
is conveyed in a Vendor-Specific Information option.

The first step is to define the format of the option:

"Dhcpd": {
"option-def": [
{

"nameﬂ. "fooﬂ

. 4

"code": 1,

"space": "vendor-encapsulated-options—-space",
"type": "record",

"array": false,

"record-types": "ipv4-address, uintl6, string",
"encapsulate": ""

1,

(Note that the option space is set to vendor—encapsulated-options—space.) Once the option format is
defined, the next step is to define actual values for that option:

"Dhcpéd": {
"option-data": [

{

"name": llfOO"’

"space": "vendor-encapsulated-options-space",
"code": 1,

"csv-format": true,

"data": "192.0.2.3, 123, Hello World"

1,

We also include the Vendor-Specific Information option, the option that conveys our suboption “foo”. This is required;
otherwise, the option will not be included in messages sent to the client.

"Dhcpd": {
"option-data": [

{

"name": "vendor—encapsulated-options"

1y

Alternatively, the option can be specified using its code.

"Dhcpéd": {
"option-data": [
{
"code": 43

68 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 1.7.0

Another popular option that is often somewhat imprecisely called “vendor option” is option 125. Its proper name is
vendor-independent vendor-specific information option or vivso. The idea behind those options is that each vendor
has its own unique set of options with their own custom formats. The vendor is identified by a 32-bit unsigned integer
called enterprise-id or vendor-id. For example, vivso with vendor-id 4491 represents DOCSIS options, and they are
often seen when dealing with cable modems.

In Kea each vendor is represented by its own vendor space. Since there are hundreds of vendors and sometimes
they use different option definitions for different hardware, it’s impossible for Kea to support them all out of the box.
Fortunately, it’s easy to define support for new vendor options. Let’s take an example of the Genexis home gateway.
This device requires sending the vivso 125 option with a suboption 2 that contains a string with the TFTP server URL.
To support such a device, three steps are needed: first, we need to define option definitions that will explain how the
option is supposed to be formed. Second, we will need to define option values. Third, we will need to tell Kea when
to send those specific options. This last step will be accomplished with client classification.

An example snippet of a configuration could look similar to the following:

{
// First, we need to define that the suboption 2 in vivso option for
// vendor-id 25167 has a specific format (it's a plain string in this example) .
// After this definition, we can specify values for option tftp.
"option-def": [
{
// We define a short name, so the option can be referenced by name.
// The option has code 2 and resides within vendor space 25167.
// Its data is a plain string.

"name": "tftp",

"code": 2,

"space": "vendor-25167",
"type": "string"

}]l

"client-classes": [

{
// We now need to tell Kea how to recognize when to use vendor space 25167.
// Usually we can use a simple expression, such as checking if the device
// sent a vivso option with specific vendor-id, e.g. "vendor[4491].exists".
// Unfortunately, Genexis is a bit unusual in this aspect, because it
// doesn't send vivso. In this case we need to look into the vendor class
// (option code 60) and see if there's a specific string that identifies
// the device.
"name": "cpe_genexis",
"test": "substring(option[60].hex,0,7) == 'HMC1000'",

// Once the device is recognized, we want to send two options:
// the vivso option with vendor-id set to 25167, and a suboption 2.
"option-data": [

{

"name": "vivso-suboptions",
"data": "25167",
"encapsulate": "vendor-25167"

// The suboption 2 value is defined as any other option. However,
// we want to send this suboption 2, even when the client didn't
// explicitly request it (often there is no way to do that for

// vendor options). Therefore we use always—-send to force Kea

// to always send this option when 25167 vendor space is involved.

8.2. DHCPv4 Server Configuration 69

Kea Administrator Reference Manual Documentation, Release 1.7.0

"name": "tftp",

"space": "vendor-25167",

"data": "tftp://192.0.2.1/genexis/HMC1000.v1.3.0-R.1img",
"always—-send": true

By default Kea sends back only those options that are requested by a client, unless there are protocol rules that tell
the DHCP server to always send an option. This approach works nicely for most cases and avoids problems with
clients refusing responses with options they don’t understand. Unfortunately, this is more complex when we consider
vendor options. Some vendors (such as docsis, identified by vendor option 4491) have a mechanism to request specific
vendor options and Kea is able to honor those. Unfortunately, for many other vendors, such as Genexis (25167) as
discussed above, Kea does not have such a mechanism, so it can’t send any sub-options on its own. To solve this issue,
we came up with the concept of persistent options. Kea can be told to always send options, even if the client did not
request them. This can be achieved by adding "always-send": true to the option definition. Note that in this
particular case an option is defined in vendor space 25167. With the “always-send” enabled, the option will be sent
every time there is a need to deal with vendor space 25167.

Another possibility is to redefine the option; see DHCPv4 Private Options.

8.2.14 Nested DHCPv4 Options (Custom Option Spaces)

It is sometimes useful to define a completely new option space, such as when a user creates a new option in the standard
option space (“dhcp4”) and wants this option to convey sub-options. Since they are in a separate space, sub-option
codes will have a separate numbering scheme and may overlap with the codes of standard options.

Note that the creation of a new option space is not required when defining sub-options for a standard option, because
one is created by default if the standard option is meant to convey any sub-options (see DHCPv4 Vendor-Specific
Options).

Assume that we want to have a DHCPv4 option called “container” with code 222 that conveys two sub-options with
codes 1 and 2. First we need to define the new sub-options:

"Dhcpd": {
"option-def": [
{

"name": "suboptl",
"code": 1,
"space": "isc",
"type": "ipv4-address",
"record-types": "",
"array": false,
"encapsulate": ""
by
{
"name": "subopt2",
"code": 2,
"space": "isc",
"type": "string",
"record-types": "",
"array": false,
"encapsulate": ""

1,

70 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 1.7.0

Note that we have defined the options to belong to a new option space (in this case, “isc”).

The next step is to define a regular DHCPv4 option with the desired code and specify that it should include options
from the new option space:

"Dhcpéd": {
"option-def": [

.7

"name": "container",
"code": 222,
"space": "dhcp4",
"type": "empty",
"array": false,
"record-types": "",
"encapsulate": "isc"

1,

The name of the option space in which the sub-options are defined is set in the encapsulate field. The type field
is set to empty, to indicate that this option does not carry any data other than sub-options.

Finally, we can set values for the new options:

"Dhcpéd": {
"option-data": [

{

"name": "suboptl",
"code": 1,
"space": "isc",
"data": "192.0.2.3"
}V
}
"name": "subopt2",
"code": 2,
"space": "isc",
"data": "Hello world"
}V
{
"name": "container",
"code": 222,
"space": "dhcp4"

I

Note that it is possible to create an option which carries some data in addition to the sub-options defined in the
encapsulated option space. For example, if the “container” option from the previous example were required to carry
a uint16 value as well as the sub-options, the t ype value would have to be set to “uint16” in the option definition.
(Such an option would then have the following data structure: DHCP header, uintl6 value, sub-options.) The value
specified with the data parameter — which should be a valid integer enclosed in quotes, e.g. “123” — would then
be assigned to the uint16 field in the “container” option.

8.2. DHCPv4 Server Configuration 71

Kea Administrator Reference Manual Documentation, Release 1.7.0

8.2.15 Unspecified Parameters for DHCPv4 Option Configuration

In many cases it is not required to specify all parameters for an option configuration, and the default values can be
used. However, it is important to understand the implications of not specifying some of them, as it may result in
configuration errors. The list below explains the behavior of the server when a particular parameter is not explicitly
specified:

* name - the server requires either an option name or an option code to identify an option. If this parameter is
unspecified, the option code must be specified.

¢ code - the server requires either an option name or an option code to identify an option. This parameter may be
left unspecified if the name parameter is specified. However, this also requires that the particular option have a
definition (either as a standard option or an administrator-created definition for the option using an ‘option-def’
structure), as the option definition associates an option with a particular name. It is possible to configure an
option for which there is no definition (unspecified option format). Configuration of such options requires the
use of the option code.

* space - if the option space is unspecified it will default to ‘dhcp4’, which is an option space holding standard
DHCPv4 options.

* data - if the option data is unspecified it defaults to an empty value. The empty value is mostly used for
the options which have no payload (boolean options), but it is legal to specify empty values for some options
which carry variable-length data and for which the specification allows a length of 0. For such options, the data
parameter may be omitted in the configuration.

* csv-format - if this value is not specified, the server will assume that the option data is specified as a list of
comma-separated values to be assigned to individual fields of the DHCP option.

8.2.16 Stateless Configuration of DHCPv4 Clients

The DHCPv4 server supports the stateless client configuration whereby the client has an IP address configured (e.g.
using manual configuration) and only contacts the server to obtain other configuration parameters, such as addresses
of DNS servers. In order to obtain the stateless configuration parameters, the client sends the DHCPINFORM message
to the server with the “ciaddr” set to the address that the client is currently using. The server unicasts the DHCPACK
message to the client that includes the stateless configuration (“yiaddr” not set).

The server will respond to the DHCPINFORM when the client is associated with a subnet defined in the server’s
configuration. An example subnet configuration will look like this:

"Dhcpéd": {
"subnet4": [
{

"subnet": "192.0.2.0/24"

"option-data": [{
"name": "domain-name-servers",
"code": 6,
"data": "192.0.2.200,192.0.2.201",
"csv-format": true,
"space": "dhcp4"

This subnet specifies the single option which will be included in the DHCPACK message to the client in response to
DHCPINFORM. Note that the subnet definition does not require the address pool configuration if it will be used solely
for the stateless configuration.

72 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 1.7.0

This server will associate the subnet with the client if one of the following conditions is met:
* The DHCPINFORM is relayed and the giaddr matches the configured subnet.
* The DHCPINFORM is unicast from the client and the ciaddr matches the configured subnet.

e The DHCPINFORM is unicast from the client and the ciaddr is not set, but the source address of the IP packet
matches the configured subnet.

* The DHCPINFORM is not relayed and the IP address on the interface on which the message is received matches
the configured subnet.

8.2.17 Client Classification in DHCPv4

The DHCPv4 server includes support for client classification. For a deeper discussion of the classification process see
Client Classification.

In certain cases it is useful to configure the server to differentiate between DHCP client types and treat them accord-
ingly. Client classification can be used to modify the behavior of almost any part of the DHCP message processing.
Kea currently offers client classification via private options and option 43 deferred unpacking; subnet selection; pool
selection; assignment of different options; and, for cable modems, specific options for use with the TFTP server
address and the boot file field.

Kea can be instructed to limit access to given subnets based on class information. This is particularly useful for cases
where two types of devices share the same link and are expected to be served from two different subnets. The primary
use case for such a scenario is cable networks, where there are two classes of devices: the cable modem itself, which
should be handed a lease from subnet A; and all other devices behind the modem, which should get a lease from subnet
B. That segregation is essential to prevent overly curious users from playing with their cable modems. For details on
how to set up class restrictions on subnets, see Configuring Subnets With Class Information.

When subnets belong to a shared network, the classification applies to subnet selection but not to pools; that is, a pool
in a subnet limited to a particular class can still be used by clients which do not belong to the class, if the pool they are
expected to use is exhausted. So the limit on access based on class information is also available at the pool level; see
Configuring Pools With Class Information, within a subnet. This is useful when segregating clients belonging to the
same subnet into different address ranges.

In a similar way, a pool can be constrained to serve only known clients, i.e. clients which have a reservation, using
the built-in “KNOWN” or “UNKNOWN” classes. Addresses can be assigned to registered clients without giving
a different address per reservation, for instance when there are not enough available addresses. The determina-
tion whether there is a reservation for a given client is made after a subnet is selected, so it is not possible to use
“KNOWN”/”UNKNOWN?” classes to select a shared network or a subnet.

The process of classification is conducted in five steps. The first step is to assess an incoming packet and assign it
to zero or more classes. The second step is to choose a subnet, possibly based on the class information. When the
incoming packet is in the special class, “DROP”, it is dropped and an debug message logged. The next step is to
evaluate class expressions depending on the built-in “KNOWN”/"UNKNOWN” classes after host reservation lookup,
using them for pool selection and assigning classes from host reservations. The list of required classes is then built
and each class of the list has its expression evaluated; when it returns “true” the packet is added as a member of the
class. The last step is to assign options, again possibly based on the class information. More complete and detailed
information is available in Client Classification.

There are two main methods of classification. The first is automatic and relies on examining the values in the vendor
class options or the existence of a host reservation. Information from these options is extracted, and a class name is
constructed from it and added to the class list for the packet. The second specifies an expression that is evaluated for
each packet. If the result is “true”, the packet is a member of the class.

8.2. DHCPv4 Server Configuration 73

Kea Administrator Reference Manual Documentation, Release 1.7.0

Note: Care should be taken with client classification, as it is easy for clients that do not meet class criteria to be
denied all service.

Setting Fixed Fields in Classification

It is possible to specify that clients belonging to a particular class should receive packets with specific values in certain
fixed fields. In particular, three fixed fields are supported: next—-server (conveys an IPv4 address, which is set
in the siaddr field), server—-hostname (conveys a server hostname, can be up to 64 bytes long, and is sent in the
sname field) and boot-file-name (conveys the configuration file, can be up to 128 bytes long, and is sent using
the file field).

Obviously, there are many ways to assign clients to specific classes, but for PXE clients the client architecture type
option (code 93) seems to be particularly suited to make the distinction. The following example checks whether the
client identifies itself as a PXE device with architecture EFI x86-64, and sets several fields if it does. See Section 2.1
of RFC 4578) or the client documentation for specific values.

"Dhcpd": {
"client-classes": [
{

"name": "ipxe_efi_x64",

"test": "option[93].hex == 0x0009",
"next-server": "192.0.2.254",
"server-hostname": "hal9000",
"boot-file-name": "/dev/null"

1,

}

If there are multiple classes defined and an incoming packet is matched to multiple classes, the class that is evaluated
first is used.

Note: The classes are ordered as specified in the configuration.

Using Vendor Class Information in Classification

The server checks whether an incoming packet includes the vendor class identifier option (60). If it does, the con-
tent of that option is prepended with “VENDOR_CLASS_", and it is interpreted as a class. For example, modern
cable modems will send this option with value “docsis3.0” and as a result the packet will belong to class “VEN-
DOR_CLASS_docsis3.0”.

Note: Certain special actions for clients in VENDOR_CLASS_docsis3.0 can be achieved by defining VEN-
DOR_CLASS_docsis3.0 and setting its next-server and boot-file-name values appropriately.

This example shows a configuration using an automatically generated “VENDOR_CLASS_" class. The administrator
of the network has decided that addresses from range 192.0.2.10 to 192.0.2.20 are going to be managed by the Dhcp4
server and only clients belonging to the docsis3.0 client class are allowed to use that pool.

74 Chapter 8. The DHCPv4 Server

https://tools.ietf.org/html/rfc4578#section-2.1
https://tools.ietf.org/html/rfc4578#section-2.1

Kea Administrator Reference Manual Documentation, Release 1.7.0

"Dhcpéd": {
"subnet4": [
{
"subnet": "192.0.2.0/24",
"pools": [{ "pool": "192.0.2.10 - 192.0.2.20" } 1,
"client-class": "VENDOR_CLASS_docsis3.0"

1y

Defining and Using Custom Classes

The following example shows how to configure a class using an expression and a subnet using that class. This
configuration defines the class named “Client_foo”. It is comprised of all clients whose client ids (option 61) start
with the string “foo”. Members of this class will be given addresses from 192.0.2.10 to 192.0.2.20 and the addresses
of their DNS servers set to 192.0.2.1 and 192.0.2.2.

"Dhcpéd": {
"client—-classes": [
{
"name": "Client_foo",
"test": "substring(option[61].hex,0,3) == 'foo'",
"option—-data": [

{

"name": "domain-name-servers",
"code": 6,
"space": "dhcp4d",
"csv-format": true,
"data": "192.0.2.1, 192.0.2.2"
}
1
}I
]I
"subnet4": [
{
"subnet": "192.0.2.0/24",
"pools": [{ "pool": "192.0.2.10 - 192.0.2.20" } 1,
"client-class": "Client_foo"

by

1,

Required Classification

In some cases it is useful to limit the scope of a class to a shared network, subnet, or pool. There are two parameters
which are used to limit the scope of the class by instructing the server to evaluate test expressions when required.

The first one is the per-class only-if-required flag, which is false by default. When it is set to t rue, the test
expression of the class is not evaluated at the reception of the incoming packet but later, and only if the class evaluation
is required.

8.2. DHCPv4 Server Configuration 75

Kea Administrator Reference Manual Documentation, Release 1.7.0

The second is require—-client—-classes, which takes a list of class names and is valid in shared-network,
subnet, and pool scope. Classes in these lists are marked as required and evaluated after selection of this specific
shared network/subnet/pool and before output option processing.

In this example, a class is assigned to the incoming packet when the specified subnet is used:

"Dhcpd": {
"client-classes": [
{
"name": "Client_foo",
"test": "member ('ALL')",
"only-if-required": true

s

1,
"subnet4": [

{
"subnet": "192.0.2.0/24",
"pools": [{ "pool": "192.0.2.10 - 192.0.2.20" } 1,
"require-client-classes": ["Client_foo" 1,

1,

Required evaluation can be used to express complex dependencies like subnet membership. It can also be used to
reverse the precedence; if an option-data is set in a subnet, it takes precedence over an option-data in a class. If the
option-data is moved to a required class and required in the subnet, a class evaluated earlier may take precedence.

Required evaluation is also available at the shared-network and pool levels. The order in which required classes are
considered is: shared-network, subnet, and pool, i.e. in the opposite order in which option-data is processed.

8.2.18 DDNS for DHCPv4

As mentioned earlier, kea-dhcp4 can be configured to generate requests to the DHCP-DDNS server (referred to here
as “D2”) to update DNS entries. These requests are known as Name Change Requests or NCRs. Each NCR contains
the following information:

1. Whether it is a request to add (update) or remove DNS entries
2. Whether the change requests forward DNS updates (A records), reverse DNS updates (PTR records), or both

3. The Fully Qualified Domain Name (FQDN), lease address, and DHCID (information identifying the client
associated with the FQDN)

The parameters for controlling the generation of NCRs for submission to D2 are contained in the dhcp—ddns
section of the kea-dhcp4 server configuration. The mandatory parameters for the DHCP DDNS configuration are
enable-updates, which is unconditionally required, and qualifying-suffix, which has no default value
and is required when enable-updates is set to true. The two (disabled and enabled) minimal DHCP DDNS
configurations are:

"Dhcpd": {
"dhcp-ddns": {
"enable-updates": false
}y

76 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 1.7.0

and

for example:

"Dhcpd": {
"dhcp-ddns": {
"enable-updates": true,
"qualifying-suffix": "example."

b

The default values for the “dhcp-ddns” section are as follows:

e "server—-ip": "127.0.0.1"
e "server-port": 53001

* "sender-ip": "o

e "sender-port": O

* "max—-queue-size": 1024

e "ncr-protocol": "UDP"

e "ncr-format": "JSON"

e "override-no-update": false

e "override-client-update": false
* "replace-client—-name": "never"
* "generated-prefix": "myhost"

* "hostname-char-set": "o

* "hostname-char-replacement": ""

DHCP-DDNS Server Connectivity

For

NCRs to reach the D2 server, kea-dhcp4 must be able to communicate with it. kea-dhcp4 uses the following

configuration parameters to control this communication:

* enable-updates - this determines whether kea-dhcp4 will generate NCRs. By default, this value is false,
so DDNS updates are disabled. To enable DDNS updates set this value to true.

e server—ip - the IP address on which D2 listens for requests. The default is the local loopback interface at
address 127.0.0.1. Either an IPv4 or IPv6 address may be specified.

server—-port - the port on which D2 listens for requests. The default value is 53001.

* sender—ip - the IP address which kea-dhcp4 uses to send requests to D2. The default value is blank, which
instructs kea-dhcp4 to select a suitable address.

sender—port - the port which kea-dhcp4 uses to send requests to D2. The default value of O instructs kea-
dhcp4 to select a suitable port.

* max—queue-size - the maximum number of requests allowed to queue waiting to be sent to D2. This value
guards against requests accumulating uncontrollably if they are being generated faster than they can be delivered.
If the number of requests queued for transmission reaches this value, DDNS updating will be turned off until

8.2.

DHCPv4 Server Configuration 77

Kea Administrator Reference Manual Documentation, Release 1.7.0

the queue backlog has been sufficiently reduced. The intent is to allow the kea-dhcp4 server to continue lease
operations without running the risk that its memory usage grows without limit. The default value is 1024.

* ncr-protocol - the socket protocol to use when sending requests to D2. Currently only UDP is supported.

* ncr-format - the packet format to use when sending requests to D2. Currently only JSON format is sup-
ported.

By default, kea-dhcp-ddns is assumed to be running on the same machine as kea-dhcp4, and all of the default values
mentioned above should be sufficient. If, however, D2 has been configured to listen on a different address or port,
these values must be altered accordingly. For example, if D2 has been configured to listen on 192.168.1.10 port 900,
the following configuration is required:

"Dhcpd": {
"dhcp-ddns": {
"server—ip": "192.168.1.10",
"server-port": 900,

by

When Does the kea-dhcp4 Server Generate a DDNS Request?

kea-dhcp4 follows the behavior prescribed for DHCP servers in RFC 4702. It is important to keep in mind that
kea-dhcp4 makes the initial decision of when and what to update and forwards that information to D2 in the form
of NCRs. Carrying out the actual DNS updates and dealing with such things as conflict resolution are within the
purview of D2 itself (see The DHCP-DDNS Server). This section describes when kea-dhcp4 will generate NCRs
and the configuration parameters that can be used to influence this decision. It assumes that the enable-updates
parameter is true.

In general, kea-dhcp4 will generate DDNS update requests when:
1. A new lease is granted in response to a DHCPREQUEST;
2. An existing lease is renewed but the FQDN associated with it has changed; or
3. An existing lease is released in response to a DHCPRELEASE.

In the second case, lease renewal, two DDNS requests will be issued: one request to remove entries for the previous
FQDN, and a second request to add entries for the new FQDN. In the last case, a lease release, a single DDNS request
to remove its entries will be made.

As for the first case, the decisions involved when granting a new lease are more complex. When a new lease is granted,
kea-dhcp4 will generate a DDNS update request if the DHCPREQUEST contains either the FQDN option (code 81)
or the Host Name option (code 12). If both are present, the server will use the FQDN option. By default, kea-dhcp4
will respect the FQDN N and S flags specified by the client as shown in the following table:

Table 8.3: Default FQDN Flag Behavior

Client Client Intent Server Response Server
Flags:N-S Flags:N-S-O
0-0 Client wants to do forward updates, server Server generates reverse-only 1-0-0

should do reverse updates request
0-1 Server should do both forward and reverse Server generates request to 0-1-0

updates update both directions
1-0 Client wants no updates done Server does not generate a 1-0-0

request

78 Chapter 8. The DHCPv4 Server

https://tools.ietf.org/html/rfc4702

Kea Administrator Reference Manual Documentation, Release 1.7.0

The first row in the table above represents “client delegation.” Here the DHCP client states that it intends to do
the forward DNS updates and the server should do the reverse updates. By default, kea-dhcp4 will honor the
client’s wishes and generate a DDNS request to the D2 server to update only reverse DNS data. The parameter
override-client-update can be used to instruct the server to override client delegation requests. When this
parameter is “true”, kea-dhcp4 will disregard requests for client delegation and generate a DDNS request to update
both forward and reverse DNS data. In this case, the N-S-O flags in the server’s response to the client will be 0-1-1
respectively.

(Note that the flag combination N=1, S=1 is prohibited according to RFC 4702. If such a combination is received from
the client, the packet will be dropped by kea-dhcp4.)

To override client delegation, set the following values in the configuration file:

"Dhcpd": {
"dhcp-ddns": {
"override-client-update": true,

}y

}

The third row in the table above describes the case in which the client requests that no DNS updates be done. The
parameter, override—-no—update, can be used to instruct the server to disregard the client’s wishes. When this
parameter is true, kea-dhcp4 will generate DDNS update requests to kea-dhcp-ddns even if the client requests that no
updates be done. The N-S-O flags in the server’s response to the client will be 0-1-1.

To override client delegation, issue the following commands:

"Dhcpd": {
"dhcp-ddns": {
"override-no-update": true,

by

}

kea-dhcp4 will always generate DDNS update requests if the client request only contains the Host Name option.
In addition, it will include an FQDN option in the response to the client with the FQDN N-S-O flags set to 0-1-0
respectively. The domain name portion of the FQDN option will be the name submitted to D2 in the DDNS update
request.

kea-dhcp4 Name Generation for DDNS Update Requests

Each Name Change Request must of course include the fully qualified domain name whose DNS entries are to be
affected. kea-dhcp4 can be configured to supply a portion or all of that name, based upon what it receives from the
client in the DHCPREQUEST.

The default rules for constructing the FQDN that will be used for DNS entries are:

1. If the DHCPREQUEST contains the client FQDN option, take the candidate name from there; otherwise, take
it from the Host Name option.

2. If the candidate name is a partial (i.e. unqualified) name, then add a configurable suffix to the name and use the
result as the FQDN.

3. If the candidate name provided is empty, generate an FQDN using a configurable prefix and suffix.

4. If the client provides neither option, then take no DNS action.

8.2. DHCPv4 Server Configuration 79

https://tools.ietf.org/html/rfc4702

Kea Administrator Reference Manual Documentation, Release 1.7.0

These rules can be amended by setting the replace-client—-name parameter, which provides the following
modes of behavior:

* never - use the name the client sent. If the client sent no name, do not generate one. This is the default mode.
* always - replace the name the client sent. If the client sent no name, generate one for the client.
* when-present - replace the name the client sent. If the client sent no name, do not generate one.

* when-not-present - use the name the client sent. If the client sent no name, generate one for the client.

Note: Note that in early versions of Kea, this parameter was a boolean and permitted only values of true and
false. Boolean values have been